結果
| 問題 | No.801 エレベーター |
| コンテスト | |
| ユーザー |
terasa
|
| 提出日時 | 2022-06-03 10:30:25 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,029 bytes |
| 記録 | |
| コンパイル時間 | 131 ms |
| コンパイル使用メモリ | 82,052 KB |
| 実行使用メモリ | 87,508 KB |
| 最終ジャッジ日時 | 2024-09-21 02:16:15 |
| 合計ジャッジ時間 | 4,081 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | TLE * 1 -- * 25 |
ソースコード
import sys
import pypyjit
import itertools
import heapq
import math
from collections import deque, defaultdict
import bisect
input = sys.stdin.readline
sys.setrecursionlimit(10 ** 6)
pypyjit.set_param('max_unroll_recursion=-1')
def index_lt(a, x):
'return largest index s.t. A[i] < x or -1 if it does not exist'
return bisect.bisect_left(a, x) - 1
def index_le(a, x):
'return largest index s.t. A[i] <= x or -1 if it does not exist'
return bisect.bisect_right(a, x) - 1
def index_gt(a, x):
'return smallest index s.t. A[i] > x or len(a) if it does not exist'
return bisect.bisect_right(a, x)
def index_ge(a, x):
'return smallest index s.t. A[i] >= x or len(a) if it does not exist'
return bisect.bisect_left(a, x)
class Matpow:
def __init__(self, N, A, p):
self.N = N
self.A = A
self.p = p
self.digit = 60
self.doubling = [None] * self.digit
self.doubling[0] = A
for i in range(1, self.digit):
self.doubling[i] = self.mul(self.doubling[i - 1], self.doubling[i - 1])
def pow(self, n):
E = [[1 if i == j else 0 for j in range(self.N)] for i in range(self.N)]
acc = E
for k in range(self.digit):
if n & (1 << k):
acc = self.mul(acc, self.doubling[k])
return acc
def mul(self, A, B):
C = [[0 for _ in range(self.N)] for _ in range(self.N)]
for i in range(self.N):
for j in range(self.N):
for k in range(self.N):
C[i][j] += A[i][k] * B[k][j]
C[i][j] %= self.p
return C
N, M, K = map(int, input().split())
mod = 10 ** 9 + 7
A = [[0 for _ in range(N)] for _ in range(N)]
for _ in range(M):
l, r = map(int, input().split())
l -= 1
for i in range(l, r):
A[i][l] += 1
if r < N:
A[i][r] -= 1
for i in range(N):
for j in range(1, N):
A[i][j] += A[i][j - 1]
Ak = Matpow(N, A, mod).pow(K)
print(Ak[0][N - 1])
terasa