結果
問題 | No.1966 Median of Divisors |
ユーザー | chineristAC |
提出日時 | 2022-06-03 21:31:08 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 262 ms / 2,000 ms |
コード長 | 1,609 bytes |
コンパイル時間 | 172 ms |
コンパイル使用メモリ | 82,172 KB |
実行使用メモリ | 77,568 KB |
最終ジャッジ日時 | 2024-09-21 02:28:10 |
合計ジャッジ時間 | 3,058 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 48 ms
56,064 KB |
testcase_01 | AC | 48 ms
55,936 KB |
testcase_02 | AC | 53 ms
58,496 KB |
testcase_03 | AC | 59 ms
64,896 KB |
testcase_04 | AC | 200 ms
77,568 KB |
testcase_05 | AC | 262 ms
77,404 KB |
testcase_06 | AC | 248 ms
77,312 KB |
testcase_07 | AC | 94 ms
77,312 KB |
testcase_08 | AC | 166 ms
77,184 KB |
testcase_09 | AC | 189 ms
77,360 KB |
testcase_10 | AC | 190 ms
77,356 KB |
testcase_11 | AC | 142 ms
77,056 KB |
testcase_12 | AC | 161 ms
77,184 KB |
ソースコード
class UnionFindVerSize(): def __init__(self, N): self._parent = [n for n in range(0, N)] self._size = [1] * N self.group = N def find_root(self, x): if self._parent[x] == x: return x self._parent[x] = self.find_root(self._parent[x]) stack = [x] while self._parent[stack[-1]]!=stack[-1]: stack.append(self._parent[stack[-1]]) for v in stack: self._parent[v] = stack[-1] return self._parent[x] def unite(self, x, y): gx = self.find_root(x) gy = self.find_root(y) if gx == gy: return self.group -= 1 if self._size[gx] < self._size[gy]: self._parent[gx] = gy self._size[gy] += self._size[gx] return gy else: self._parent[gy] = gx self._size[gx] += self._size[gy] return gx def get_size(self, x): return self._size[self.find_root(x)] def is_same_group(self, x, y): return self.find_root(x) == self.find_root(y) import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import log,gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) mod = 10**9 + 7 i2 = pow(2,mod-2,mod) i6 = pow(6,mod-2,mod) for _ in range(int(input())): N,M = mi() S = pow(N,M,mod) all = (S*(S+1) % mod) * i2 % mod T = pow(N,M//2,mod) sq = (T*(2*T+1) % mod)*((T+1)*i6 % mod) % mod print((all-sq)%mod)