結果
| 問題 |
No.1967 Sugoroku Optimization
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-06-03 21:42:26 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 173 ms / 2,000 ms |
| コード長 | 1,966 bytes |
| コンパイル時間 | 205 ms |
| コンパイル使用メモリ | 82,304 KB |
| 実行使用メモリ | 113,664 KB |
| 最終ジャッジ日時 | 2024-09-21 02:33:12 |
| 合計ジャッジ時間 | 4,141 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 |
ソースコード
class UnionFindVerSize():
def __init__(self, N):
self._parent = [n for n in range(0, N)]
self._size = [1] * N
self.group = N
def find_root(self, x):
if self._parent[x] == x: return x
self._parent[x] = self.find_root(self._parent[x])
stack = [x]
while self._parent[stack[-1]]!=stack[-1]:
stack.append(self._parent[stack[-1]])
for v in stack:
self._parent[v] = stack[-1]
return self._parent[x]
def unite(self, x, y):
gx = self.find_root(x)
gy = self.find_root(y)
if gx == gy: return
self.group -= 1
if self._size[gx] < self._size[gy]:
self._parent[gx] = gy
self._size[gy] += self._size[gx]
return gy
else:
self._parent[gy] = gx
self._size[gx] += self._size[gy]
return gx
def get_size(self, x):
return self._size[self.find_root(x)]
def is_same_group(self, x, y):
return self.find_root(x) == self.find_root(y)
import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import log,gcd
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
def cmb(n, r, mod):
if ( r<0 or r>n ):
return 0
return (g1[n] * g2[r] % mod) * g2[n-r] % mod
mod = 998244353
N = 2*10**5
g1 = [1]*(N+1)
g2 = [1]*(N+1)
inverse = [1]*(N+1)
for i in range( 2, N + 1 ):
g1[i]=( ( g1[i-1] * i ) % mod )
inverse[i]=( ( -inverse[mod % i] * (mod//i) ) % mod )
g2[i]=( (g2[i-1] * inverse[i]) % mod )
inverse[0]=0
N,K = mi()
dp = [[0 for j in range(N+1)] for i in range(N+1)]
dp[0][0] = 1
for k in range(1,N+1):
dp[k][0] = 1
t = 0
for n in range(1,N+1):
t += dp[k-1][n-1]
t %= mod
dp[k][n] = t * inverse[n] % mod
print(dp[K][N])