結果
| 問題 | No.1514 Squared Matching |
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2022-06-05 19:08:15 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 4,503 bytes |
| コンパイル時間 | 2,105 ms |
| コンパイル使用メモリ | 202,268 KB |
| 最終ジャッジ日時 | 2025-01-29 18:35:19 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 TLE * 5 MLE * 15 |
ソースコード
#include <bits/stdc++.h>
#define REP_(i, a_, b_, a, b, ...) for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using Int = long long;
using Uint = unsigned long long;
using Real = long double;
template<typename T, typename U>
inline bool chmax(T &a, U b) { return a < b and ((a = b), true); }
template<typename T, typename U>
inline bool chmin(T &a, U b) { return a > b and ((a = b), true); }
template<typename T>
constexpr T kBigVal = std::numeric_limits<T>::max() / 2;
#if __cplusplus < 202002L
template<typename T>
inline int ssize(const T &a) { return (int) a.size(); }
#endif
struct CastInput {
template<typename T>
operator T() const {
T x;
assert(std::cin >> x);
return x;
}
struct Sized {
int n;
template<typename T>
operator T() const {
T xs(n);
for (auto &x: xs) assert(std::cin >> x);
return xs;
}
};
Sized operator()(int n) const { return {n}; }
} in;
template<typename Container>
std::ostream &print_seq(const Container &seq,
const char *sep = " ",
const char *ends = "\n",
std::ostream &os = std::cout) {
const auto itl = std::begin(seq), itr = std::end(seq);
for (auto it = itl; it != itr; ++it) {
if (it != itl) os << sep;
os << *it;
}
return os << ends;
}
template<typename T>
inline std::ostream &print_one(const T &x, char endc) {
if constexpr (std::is_same<T, bool>::value) {
return std::cout << (x ? "Yes" : "No") << endc;
} else {
return std::cout << x << endc;
}
}
template<typename T>
inline std::ostream &print(const T &x) { return print_one(x, '\n'); }
template<typename T, typename... Ts>
std::ostream &print(const T &head, Ts... tail) {
return print_one(head, ' '), print(tail...);
}
inline std::ostream &print() { return std::cout << '\n'; }
void init_(bool interactive = false) {
std::ios::sync_with_stdio(false);
if (not interactive) std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(18);
}
void exit_() {
#ifdef MY_DEBUG
std::string unused;
assert(not(std::cin >> unused)); // No input is left behind.
#endif
std::cout.flush(), std::cerr.flush(), std::_Exit(0);
}
inline void init_test_case(int t, int T) {
#ifdef MY_DEBUG
if (T > 1) {
std::cerr << "\033[35m=== case " << t << " of " << T << " ===\033[0m"
<< std::endl;
}
#endif
}
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#include "backward.hpp"
backward::SignalHandling kSignalHandling;
#else
#define DUMP(...)
#define cerr if(false)cerr
#endif
using namespace std;
// O(n) sieve
struct PrimeSieve {
std::vector<int> spf; // smallest prime factors table.
std::vector<int> primes;
explicit PrimeSieve(int n) : spf(n + 1) {
for (int i = 2; i <= n; ++i) {
if (spf[i] == 0) {
spf[i] = i;
primes.push_back(i);
}
for (const auto &p: primes) {
if (i * p > n) break;
spf[i * p] = p;
if (i % p == 0) break;
}
}
}
inline bool is_prime(int n) const { return spf[n] == n; }
auto factorize(int n) const {
assert(0 < n and n < int(spf.size()));
std::vector<std::pair<Int, int>> res;
while (n > 1) {
const int p = spf[n];
int count = 0;
do {
n /= p;
++count;
} while (n % p == 0);
res.emplace_back(p, count);
}
return res;
}
};
// Enumerates divisors from prime factorization.
// O(d(n)) + sorting
std::vector<Int> enumerate_divisors(
const std::vector<std::pair<Int, int>> &fac) {
std::vector<Int> res = {1};
for (auto [p, k]: fac) {
int sz = res.size();
for (int i = 0; i < sz; ++i) {
Int pp = 1;
for (int j = 0; j < k; ++j) {
pp *= p;
res.push_back(res[i] * pp);
}
}
}
//std::sort(res.begin(), res.end());
return res;
}
auto solve() {
Int N = in;
PrimeSieve sieve(N + 10);
vector<Int> cnt(N + 10);
for (Int i = 1; i <= N; ++i) {
Int n = i;
Int fp = 1;
while (n > 1) {
const int p = sieve.spf[n];
const Int p2 = Int(p) * p;
while (n % p2 == 0) n /= p2;
if (n % p == 0) {
n /= p;
fp *= p;
}
}
++cnt[fp];
}
Int ans = 0;
REP(i, 1, N + 1) ans += cnt[i] * cnt[i];
print(ans);
}
int main() {
init_();
const int T = 1;//in;
REP(t, T) {
init_test_case(t, T);
(solve());
}
exit_();
}
keijak