結果
問題 | No.109 N! mod M |
ユーザー | imgry22 |
提出日時 | 2014-12-27 00:21:40 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 94 ms / 5,000 ms |
コード長 | 2,419 bytes |
コンパイル時間 | 1,542 ms |
コンパイル使用メモリ | 159,468 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-22 04:49:19 |
合計ジャッジ時間 | 2,471 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 7 ms
6,940 KB |
testcase_02 | AC | 5 ms
6,944 KB |
testcase_03 | AC | 3 ms
6,940 KB |
testcase_04 | AC | 7 ms
6,940 KB |
testcase_05 | AC | 94 ms
6,944 KB |
testcase_06 | AC | 5 ms
6,940 KB |
testcase_07 | AC | 12 ms
6,944 KB |
testcase_08 | AC | 3 ms
6,940 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; typedef long long int ll; typedef pair<int, int> pii; typedef vector<int> vi; typedef vector<pair<int, int> > vii; #define rrep(i, m, n) for(int (i)=(m); (i)<(n); (i)++) #define erep(i, n) for(int (i)=1; (i)<=(n); (i)++) #define rep(i, n) for(int (i)=0; (i)<(n); (i)++) #define rrev(i, m, n) for(int (i)=(n)-1; (i)>=(m); (i)--) #define erev(i, n) for(int (i)=(n); (i)>=1; (i)--) #define rev(i, n) for(int (i)=(n)-1; (i)>=0; (i)--) #define vrep(i, c) for(__typeof((c).begin())i=(c).begin(); i!=(c).end(); i++) #define ALL(v) (v).begin(), (v).end() #define mp make_pair #define pb push_back template<class T1, class T2> inline void minup(T1& m, T2 x){ if(m>x) m=static_cast<T2>(x); } template<class T1, class T2> inline void maxup(T1& m, T2 x){ if(m<x) m=static_cast<T2>(x); } #define INF 1000000000 #define MOD 1000000009 #define EPS 1E-9 ll extgcd(ll a, ll b, ll& x, ll& y) { ll d = a; if(b != 0){ d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else{ x = 1; y = 0; } return d; } ll modInverse(ll a, ll m) { ll x, y; extgcd(a, m, x, y); return (m + x % m) % m; } #define MAX_T 100 #define MAX_M 1000000000 int t; ll n[MAX_T]; ll m[MAX_T]; ll lim; ll prime[10000000]; bool isPrime[MAX_M+1]; int ptr; int main() { cin >> t; rep(i, t) cin >> n[i] >> m[i]; rep(i, t) if(n[i] < m[i]) maxup(lim, m[i]); lim = MAX_M; prime[ptr++] = 2; for(ll i=3; i<=sqrt(lim); i+=2LL){ if(!isPrime[i]){ for(ll j=2*i; j<=sqrt(lim); j+=i){ isPrime[j] = true; } prime[ptr++] = i; } } rep(i, t){ if(n[i] >= m[i]){ puts("0"); continue; } ll sum = 0LL; ll pi = 1LL; rep(j, ptr){ if(pi * prime[j] > m[i]) break; ll p; for(p=prime[j]; m[i]%p==0; p*=prime[j]); p /= prime[j]; if(p == 1LL) continue; pi *= p; if(n[i] >= p) continue; ll r = 1LL; erep(k, n[i]%p) r = (r * k) % p; sum = (sum + ((((m[i]/p) * r) % m[i]) * modInverse(m[i]/p, p)) % m[i]) % m[i]; } ll r = 1LL; ll p = m[i] / pi; rrep(k, n[i]+1, p-1) r = (r * k) % p; r = modInverse(r, p); if(n[i] < p) sum = (sum + ((((m[i]/p) * r) % m[i]) * modInverse(m[i]/p, p)) % m[i]) % m[i]; if(n[i]+1 == p && pi == 1LL) sum = n[i]; printf("%lld\n", sum); continue; } return 0; }