結果

問題 No.2020 Sum of Common Prefix Length
ユーザー souta-1326souta-1326
提出日時 2022-06-06 19:09:35
言語 PyPy3
(7.3.15)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 2,236 bytes
コンパイル時間 369 ms
コンパイル使用メモリ 82,456 KB
実行使用メモリ 318,148 KB
最終ジャッジ日時 2024-06-23 11:12:47
合計ジャッジ時間 24,394 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 36 TLE * 2
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline = sys.stdin.readline
class Fenwick_Tree:
  def __init__(self,N:int):
    self.N = N
    self.dat = [0]*(N+1)
  def inc(self,p:int):
    p += 1
    while p <= self.N:
      self.dat[p] += 1
      p += p&-p
  def dec(self,p:int):
    p += 1
    while p <= self.N:
      self.dat[p] -= 1
      p += p&-p
  def _sum(self,r:int):
    s = 0
    while r:
      s += self.dat[r]
      r -= r&-r
    return s
  sum = lambda self,l,r:self._sum(r)-self._sum(l)

class EulerTour:
  def __init__(self,G):
    self.N = len(G)
    self.begin = [0]*self.N
    self.end = [0]*self.N
    self.B_v = Fenwick_Tree(self.N*2)
    cnt = 0
    f = 0
    itr = [0]*self.N
    par = [0]*self.N
    par[f] = -1
    while f != -1:
      if itr[f] == 0:
        self.begin[f] = cnt;cnt+=1
      if itr[f] == len(G[f]):
        self.end[f] = cnt;cnt+=1
        f = par[f]
        continue
      par[G[f][itr[f]]] = f
      itr[f]+=1
      f = G[f][itr[f]-1]
  def add(self,p:int):
    self.B_v.inc(self.begin[p])
    self.B_v.dec(self.end[p])
  def query(self,p:int):
    return self.B_v.sum(0,self.begin[p]+1)

def main():
  N = int(readline())
  S = [readline().rstrip() for _ in range(N)]
  Q = int(readline())
  T = [0]*Q
  X = [0]*Q
  C = [""]*Q
  for i in range(Q):
    I = readline().rstrip().split()
    T[i] = int(I[0]);X[i] = int(I[1])-1
    if T[i]==1:C[i] = I[2]
  
  path = [[0] for _ in range(N)]
  node = [""]
  nex = [[-1]*26]
  S2 = S[:]
  for i in range(Q):
    if T[i] == 1:
      S2[X[i]] += C[i]
  for i in range(N):
    now_node = 0
    for c in S2[i]:
      z = ord(c)-97
      if nex[now_node][z] == -1:
        nex[now_node][z] = len(node)
        node.append(c)
        nex.append([-1]*26)
      now_node = nex[now_node][z]
      path[i].append(now_node)
  
  V = len(node)
  G = [[] for _ in range(V)]
  for i in range(V):
    for j in range(26):
      if nex[i][j] != -1:
        G[i].append(nex[i][j])
  Eul = EulerTour(G)
  len_S = list(map(len,S))
  for i in range(N):
    for j in range(len_S[i]):Eul.add(path[i][j+1])
  for i in range(Q):
    if T[i] == 1:
      len_S[X[i]] += 1
      Eul.add(path[X[i]][len_S[X[i]]])
    else:
      print(Eul.query(path[X[i]][len_S[X[i]]]))

if __name__ == "__main__":
  main()
0