結果
問題 | No.1973 Divisor Sequence |
ユーザー | tokusakurai |
提出日時 | 2022-06-10 21:35:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 29 ms / 2,000 ms |
コード長 | 7,090 bytes |
コンパイル時間 | 2,138 ms |
コンパイル使用メモリ | 212,404 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-21 07:27:18 |
合計ジャッジ時間 | 3,043 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 14 ms
6,944 KB |
testcase_03 | AC | 4 ms
6,944 KB |
testcase_04 | AC | 9 ms
6,940 KB |
testcase_05 | AC | 10 ms
6,944 KB |
testcase_06 | AC | 8 ms
6,940 KB |
testcase_07 | AC | 5 ms
6,944 KB |
testcase_08 | AC | 6 ms
6,944 KB |
testcase_09 | AC | 8 ms
6,940 KB |
testcase_10 | AC | 9 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 9 ms
6,940 KB |
testcase_13 | AC | 4 ms
6,944 KB |
testcase_14 | AC | 7 ms
6,944 KB |
testcase_15 | AC | 13 ms
6,944 KB |
testcase_16 | AC | 13 ms
6,940 KB |
testcase_17 | AC | 8 ms
6,944 KB |
testcase_18 | AC | 3 ms
6,940 KB |
testcase_19 | AC | 10 ms
6,944 KB |
testcase_20 | AC | 3 ms
6,940 KB |
testcase_21 | AC | 11 ms
6,940 KB |
testcase_22 | AC | 9 ms
6,940 KB |
testcase_23 | AC | 26 ms
6,944 KB |
testcase_24 | AC | 29 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < n; i++) #define rep2(i, x, n) for (int i = x; i <= n; i++) #define rep3(i, x, n) for (int i = x; i >= n; i--) #define each(e, v) for (auto &e : v) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; const int MOD = 1000000007; // const int MOD = 998244353; template <typename T> vector<T> divisors(const T &n) { vector<T> ret; for (T i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(begin(ret), end(ret)); return ret; } template <typename T> vector<pair<T, int>> prime_factor(T n) { vector<pair<T, int>> ret; for (T i = 2; i * i <= n; i++) { int cnt = 0; while (n % i == 0) cnt++, n /= i; if (cnt > 0) ret.emplace_back(i, cnt); } if (n > 1) ret.emplace_back(n, 1); return ret; } template <typename T> bool is_prime(const T &n) { if (n == 1) return false; for (T i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } // 1,2,...,n のうち k と互いに素である自然数の個数 template <typename T> T coprime(T n, T k) { vector<pair<T, int>> ps = prime_factor(k); int m = ps.size(); T ret = 0; for (int i = 0; i < (1 << m); i++) { T prd = 1; for (int j = 0; j < m; j++) { if ((i >> j) & 1) prd *= ps[j].first; } ret += (__builtin_parity(i) ? -1 : 1) * (n / prd); } return ret; } vector<bool> Eratosthenes(const int &n) { vector<bool> ret(n + 1, true); if (n >= 0) ret[0] = false; if (n >= 1) ret[1] = false; for (int i = 2; i * i <= n; i++) { if (!ret[i]) continue; for (int j = i + i; j <= n; j += i) ret[j] = false; } return ret; } vector<int> Eratosthenes2(const int &n) { vector<int> ret(n + 1); iota(begin(ret), end(ret), 0); if (n >= 0) ret[0] = -1; if (n >= 1) ret[1] = -1; for (int i = 2; i * i <= n; i++) { if (ret[i] < i) continue; for (int j = i + i; j <= n; j += i) ret[j] = min(ret[j], i); } return ret; } template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; int main() { int N; ll M; cin >> N >> M; vector<pli> ps = prime_factor(M); mint ans = 1; each(e, ps) { int K = e.second; // cout << K << '\n'; vector<mint> dp(K + 1, 0), ndp(K + 1, 0); dp[0] = 1; rep(i, N) { fill(all(ndp), 0); ndp[K] = dp[0]; rep2(j, 1, K) ndp[K - j] = ndp[K - j + 1] + dp[j]; swap(dp, ndp); // print(dp); } ans *= accumulate(all(dp), mint(0)); } cout << ans << '\n'; }