結果

問題 No.1975 Zigzag Sequence
ユーザー 👑 emthrmemthrm
提出日時 2022-06-10 21:54:19
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 209 ms / 2,000 ms
コード長 6,705 bytes
コンパイル時間 2,603 ms
コンパイル使用メモリ 220,376 KB
実行使用メモリ 26,460 KB
最終ジャッジ日時 2024-09-21 06:14:10
合計ジャッジ時間 6,869 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 15 ms
6,940 KB
testcase_04 AC 7 ms
6,940 KB
testcase_05 AC 108 ms
7,936 KB
testcase_06 AC 97 ms
10,756 KB
testcase_07 AC 17 ms
6,940 KB
testcase_08 AC 60 ms
6,944 KB
testcase_09 AC 150 ms
14,108 KB
testcase_10 AC 84 ms
8,576 KB
testcase_11 AC 95 ms
9,284 KB
testcase_12 AC 19 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 2 ms
6,944 KB
testcase_18 AC 66 ms
6,940 KB
testcase_19 AC 65 ms
6,940 KB
testcase_20 AC 81 ms
7,504 KB
testcase_21 AC 80 ms
7,656 KB
testcase_22 AC 194 ms
26,328 KB
testcase_23 AC 195 ms
26,332 KB
testcase_24 AC 209 ms
26,460 KB
testcase_25 AC 204 ms
26,328 KB
testcase_26 AC 103 ms
7,052 KB
testcase_27 AC 201 ms
16,844 KB
testcase_28 AC 197 ms
26,368 KB
testcase_29 AC 201 ms
26,328 KB
testcase_30 AC 200 ms
26,336 KB
testcase_31 AC 203 ms
26,336 KB
testcase_32 AC 63 ms
6,940 KB
testcase_33 AC 63 ms
6,940 KB
testcase_34 AC 118 ms
9,112 KB
testcase_35 AC 117 ms
8,984 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x = 10000000) {
inv(x, true);
fact(x);
fact_inv(x);
}
static MInt inv(const int n, const bool init = false) {
// assert(0 <= n && n < M && std::__gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) {
return inverse[n];
} else if (init) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv(k, true);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
bool operator==(const MInt& x) const { return v == x.v; }
bool operator!=(const MInt& x) const { return v != x.v; }
bool operator<(const MInt& x) const { return v < x.v; }
bool operator<=(const MInt& x) const { return v <= x.v; }
bool operator>(const MInt& x) const { return v > x.v; }
bool operator>=(const MInt& x) const { return v >= x.v; }
MInt& operator++() {
if (++v == M) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
template <typename Abelian>
struct FenwickTree {
explicit FenwickTree(const int n, const Abelian ID = 0)
: n(n), ID(ID), data(n, ID) {}
void add(int idx, const Abelian val) {
for (; idx < n; idx |= idx + 1) {
data[idx] += val;
}
}
Abelian sum(int idx) const {
Abelian res = ID;
for (--idx; idx >= 0; idx = (idx & (idx + 1)) - 1) {
res += data[idx];
}
return res;
}
Abelian sum(const int left, const int right) const {
return left < right ? sum(right) - sum(left) : ID;
}
Abelian operator[](const int idx) const { return sum(idx, idx + 1); }
int lower_bound(Abelian val) const {
if (val <= ID) return 0;
int res = 0, exponent = 1;
while (exponent <= n) exponent <<= 1;
for (int mask = exponent >> 1; mask > 0; mask >>= 1) {
const int idx = res + mask - 1;
if (idx < n && data[idx] < val) {
val -= data[idx];
res += mask;
}
}
return res;
}
private:
const int n;
const Abelian ID;
std::vector<Abelian> data;
};
int main() {
int n; cin >> n;
map<int, vector<int>> a;
REP(i, n) {
int a_i; cin >> a_i;
a[a_i].emplace_back(i);
}
vector<ModInt> p2(n + 1, 1);
REP(i, n) p2[i + 1] = p2[i] * 2;
ModInt ans = 0;
REP(_, 2) {
FenwickTree<ModInt> left(n), right(n);
for (const auto [_, ps] : a) {
for (int p : ps) ans += left.sum(p) * right.sum(p, n);
for (int p : ps) {
left.add(p, ModInt(2).pow(p));
right.add(p, ModInt(2).pow(n - 1 - p));
}
}
map<int, vector<int>> nxt;
for (const auto [key, val] : a) nxt[-key] = val;
a.swap(nxt);
}
cout << ans << '\n';
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0