結果
問題 | No.1975 Zigzag Sequence |
ユーザー | 👑 emthrm |
提出日時 | 2022-06-10 21:54:19 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 209 ms / 2,000 ms |
コード長 | 6,705 bytes |
コンパイル時間 | 2,603 ms |
コンパイル使用メモリ | 220,376 KB |
実行使用メモリ | 26,460 KB |
最終ジャッジ日時 | 2024-09-21 06:14:10 |
合計ジャッジ時間 | 6,869 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 15 ms
6,940 KB |
testcase_04 | AC | 7 ms
6,940 KB |
testcase_05 | AC | 108 ms
7,936 KB |
testcase_06 | AC | 97 ms
10,756 KB |
testcase_07 | AC | 17 ms
6,940 KB |
testcase_08 | AC | 60 ms
6,944 KB |
testcase_09 | AC | 150 ms
14,108 KB |
testcase_10 | AC | 84 ms
8,576 KB |
testcase_11 | AC | 95 ms
9,284 KB |
testcase_12 | AC | 19 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 66 ms
6,940 KB |
testcase_19 | AC | 65 ms
6,940 KB |
testcase_20 | AC | 81 ms
7,504 KB |
testcase_21 | AC | 80 ms
7,656 KB |
testcase_22 | AC | 194 ms
26,328 KB |
testcase_23 | AC | 195 ms
26,332 KB |
testcase_24 | AC | 209 ms
26,460 KB |
testcase_25 | AC | 204 ms
26,328 KB |
testcase_26 | AC | 103 ms
7,052 KB |
testcase_27 | AC | 201 ms
16,844 KB |
testcase_28 | AC | 197 ms
26,368 KB |
testcase_29 | AC | 201 ms
26,328 KB |
testcase_30 | AC | 200 ms
26,336 KB |
testcase_31 | AC | 203 ms
26,336 KB |
testcase_32 | AC | 63 ms
6,940 KB |
testcase_33 | AC | 63 ms
6,940 KB |
testcase_34 | AC | 118 ms
9,112 KB |
testcase_35 | AC | 117 ms
8,984 KB |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;constexpr int INF = 0x3f3f3f3f;constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;constexpr double EPS = 1e-8;constexpr int MOD = 1000000007;// constexpr int MOD = 998244353;constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U>inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U>inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {std::cin.tie(nullptr);std::ios_base::sync_with_stdio(false);std::cout << fixed << setprecision(20);}} iosetup;template <int M>struct MInt {unsigned int v;MInt() : v(0) {}MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}static constexpr int get_mod() { return M; }static void set_mod(const int divisor) { assert(divisor == M); }static void init(const int x = 10000000) {inv(x, true);fact(x);fact_inv(x);}static MInt inv(const int n, const bool init = false) {// assert(0 <= n && n < M && std::__gcd(n, M) == 1);static std::vector<MInt> inverse{0, 1};const int prev = inverse.size();if (n < prev) {return inverse[n];} else if (init) {// "n!" and "M" must be disjoint.inverse.resize(n + 1);for (int i = prev; i <= n; ++i) {inverse[i] = -inverse[M % i] * (M / i);}return inverse[n];}int u = 1, v = 0;for (unsigned int a = n, b = M; b;) {const unsigned int q = a / b;std::swap(a -= q * b, b);std::swap(u -= q * v, v);}return u;}static MInt fact(const int n) {static std::vector<MInt> factorial{1};const int prev = factorial.size();if (n >= prev) {factorial.resize(n + 1);for (int i = prev; i <= n; ++i) {factorial[i] = factorial[i - 1] * i;}}return factorial[n];}static MInt fact_inv(const int n) {static std::vector<MInt> f_inv{1};const int prev = f_inv.size();if (n >= prev) {f_inv.resize(n + 1);f_inv[n] = inv(fact(n).v);for (int i = n; i > prev; --i) {f_inv[i - 1] = f_inv[i] * i;}}return f_inv[n];}static MInt nCk(const int n, const int k) {if (n < 0 || n < k || k < 0) return 0;return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :fact_inv(n - k) * fact_inv(k));}static MInt nPk(const int n, const int k) {return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);}static MInt nHk(const int n, const int k) {return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));}static MInt large_nCk(long long n, const int k) {if (n < 0 || n < k || k < 0) return 0;inv(k, true);MInt res = 1;for (int i = 1; i <= k; ++i) {res *= inv(i) * n--;}return res;}MInt pow(long long exponent) const {MInt res = 1, tmp = *this;for (; exponent > 0; exponent >>= 1) {if (exponent & 1) res *= tmp;tmp *= tmp;}return res;}MInt& operator+=(const MInt& x) {if ((v += x.v) >= M) v -= M;return *this;}MInt& operator-=(const MInt& x) {if ((v += M - x.v) >= M) v -= M;return *this;}MInt& operator*=(const MInt& x) {v = static_cast<unsigned long long>(v) * x.v % M;return *this;}MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }bool operator==(const MInt& x) const { return v == x.v; }bool operator!=(const MInt& x) const { return v != x.v; }bool operator<(const MInt& x) const { return v < x.v; }bool operator<=(const MInt& x) const { return v <= x.v; }bool operator>(const MInt& x) const { return v > x.v; }bool operator>=(const MInt& x) const { return v >= x.v; }MInt& operator++() {if (++v == M) v = 0;return *this;}MInt operator++(int) {const MInt res = *this;++*this;return res;}MInt& operator--() {v = (v == 0 ? M - 1 : v - 1);return *this;}MInt operator--(int) {const MInt res = *this;--*this;return res;}MInt operator+() const { return *this; }MInt operator-() const { return MInt(v ? M - v : 0); }MInt operator+(const MInt& x) const { return MInt(*this) += x; }MInt operator-(const MInt& x) const { return MInt(*this) -= x; }MInt operator*(const MInt& x) const { return MInt(*this) *= x; }MInt operator/(const MInt& x) const { return MInt(*this) /= x; }friend std::ostream& operator<<(std::ostream& os, const MInt& x) {return os << x.v;}friend std::istream& operator>>(std::istream& is, MInt& x) {long long v;is >> v;x = MInt(v);return is;}};using ModInt = MInt<MOD>;template <typename Abelian>struct FenwickTree {explicit FenwickTree(const int n, const Abelian ID = 0): n(n), ID(ID), data(n, ID) {}void add(int idx, const Abelian val) {for (; idx < n; idx |= idx + 1) {data[idx] += val;}}Abelian sum(int idx) const {Abelian res = ID;for (--idx; idx >= 0; idx = (idx & (idx + 1)) - 1) {res += data[idx];}return res;}Abelian sum(const int left, const int right) const {return left < right ? sum(right) - sum(left) : ID;}Abelian operator[](const int idx) const { return sum(idx, idx + 1); }int lower_bound(Abelian val) const {if (val <= ID) return 0;int res = 0, exponent = 1;while (exponent <= n) exponent <<= 1;for (int mask = exponent >> 1; mask > 0; mask >>= 1) {const int idx = res + mask - 1;if (idx < n && data[idx] < val) {val -= data[idx];res += mask;}}return res;}private:const int n;const Abelian ID;std::vector<Abelian> data;};int main() {int n; cin >> n;map<int, vector<int>> a;REP(i, n) {int a_i; cin >> a_i;a[a_i].emplace_back(i);}vector<ModInt> p2(n + 1, 1);REP(i, n) p2[i + 1] = p2[i] * 2;ModInt ans = 0;REP(_, 2) {FenwickTree<ModInt> left(n), right(n);for (const auto [_, ps] : a) {for (int p : ps) ans += left.sum(p) * right.sum(p, n);for (int p : ps) {left.add(p, ModInt(2).pow(p));right.add(p, ModInt(2).pow(n - 1 - p));}}map<int, vector<int>> nxt;for (const auto [key, val] : a) nxt[-key] = val;a.swap(nxt);}cout << ans << '\n';return 0;}