結果
問題 | No.1975 Zigzag Sequence |
ユーザー | Demystify |
提出日時 | 2022-06-10 22:08:21 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 10,045 bytes |
コンパイル時間 | 2,599 ms |
コンパイル使用メモリ | 215,436 KB |
実行使用メモリ | 7,296 KB |
最終ジャッジ日時 | 2024-09-21 06:21:26 |
合計ジャッジ時間 | 4,655 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 18 ms
6,944 KB |
testcase_19 | AC | 18 ms
6,940 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | AC | 37 ms
7,168 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; // -------------------------------------------------------- #define FOR(i,l,r) for (ll i = (l); i < (r); ++i) #define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i) #define REP(i,n) FOR(i,0,n) #define RREP(i,n) RFOR(i,0,n) #define ALL(c) (c).begin(), (c).end() #define RALL(c) (c).rbegin(), (c).rend() #define SORT(c) sort(ALL(c)) #define RSORT(c) sort(RALL(c)) #define MIN(c) *min_element(ALL(c)) #define MAX(c) *max_element(ALL(c)) #define COUNT(c,v) count(ALL(c),(v)) #define SZ(c) ((ll)(c).size()) #define BIT(b,i) (((b)>>(i)) & 1) #define PCNT(b) __builtin_popcountll(b) #define P0(i) (((i) & 1) == 0) #define P1(i) (((i) & 1) == 1) #define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v))) #define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v))) #define UQ(c) SORT(c), (c).erase(unique(ALL(c)), (c).end()) #define elif else if #ifdef _LOCAL #define debug_bar cerr << "--------------------\n"; #define debug(x) cerr << "l." << __LINE__ << " : " << #x << " = " << (x) << '\n' #define debug_pair(x) cerr << "l." << __LINE__ << " : " << #x << " = (" << x.first << "," << x.second << ")\n"; template<class T> void debug_line(const vector<T>& ans, int l, int r, int L = 0) { cerr << "l." << L << " :"; for (int i = l; i < r; i++) { cerr << ' ' << ans[i]; } cerr << '\n'; } #else #define cerr if (false) cerr #define debug_bar #define debug(x) #define debug_pair(x) template<class T> void debug_line([[maybe_unused]] const vector<T>& ans, [[maybe_unused]] int l, [[maybe_unused]] int r, [[maybe_unused]] int L = 0) {} #endif template<class... T> void input(T&... a) { (cin >> ... >> a); } void print() { cout << '\n'; } template<class T> void print(const T& a) { cout << a << '\n'; } template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; } cout << '\n'; } template<class T> bool chmin(T& a, const T b) { if (b < a) { a = b; return 1; } return 0; } template<class T> bool chmax(T& a, const T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); } template<class T> vector<T> cumsum(const vector<T>& A, bool offset = true) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) { S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; } ll mod(ll x, ll m) { assert(m != 0); return (x % m + m) % m; } ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); } ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); } ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; } pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); } ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); } ll digit_len(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; } ll digit_sum(ll n) { assert(n >= 0); ll sum = 0; while (n > 0) { sum += n % 10; n /= 10; } return sum; } ll digit_prod(ll n) { assert(n >= 0); if (n == 0) { return 0; } ll prod = 1; while (n > 0) { prod *= n % 10; n /= 10; } return prod; } ll xor_sum(ll x) { assert(0 <= x); switch (x % 4) { case 0: return x; case 1: return 1; case 2: return x ^ 1; case 3: return 0; } assert(false); } string toupper(const string& S) { string T(S); for (int i = 0; i < (int)T.size(); i++) { T[i] = toupper(T[i]); } return T; } string tolower(const string& S) { string T(S); for (int i = 0; i < (int)T.size(); i++) { T[i] = tolower(T[i]); } return T; } int a2i(const char& c) { assert(islower(c)); return (c - 'a'); } int A2i(const char& c) { assert(isupper(c)); return (c - 'A'); } int d2i(const char& d) { assert(isdigit(d)); return (d - '0'); } char i2a(const int& i) { assert(0 <= i && i < 26); return ('a' + i); } char i2A(const int& i) { assert(0 <= i && i < 26); return ('A' + i); } char i2d(const int& i) { assert(0 <= i && i <= 9); return ('0' + i); } using P = pair<ll,ll>; using VP = vector<P>; using VVP = vector<VP>; using VS = vector<string>; using VVS = vector<VS>; using VI = vector<int>; using VVI = vector<VI>; using VVVI = vector<VVI>; using VLL = vector<ll>; using VVLL = vector<VLL>; using VVVLL = vector<VVLL>; using VB = vector<bool>; using VVB = vector<VB>; using VVVB = vector<VVB>; using VD = vector<double>; using VVD = vector<VD>; using VVVD = vector<VVD>; using VLD = vector<ld>; using VVLD = vector<VLD>; using VVVLD = vector<VVLD>; const ld EPS = 1e-10; const ld PI = acosl(-1.0); constexpr ll MOD = 1000000007; // constexpr ll MOD = 998244353; constexpr int inf = (1 << 30) - 1; // 1073741824 - 1 constexpr ll INF = (1LL << 62) - 1; // 4611686018427387904 - 1 // -------------------------------------------------------- #include <atcoder/fenwicktree> using namespace atcoder; // References: // mint: // <https://github.com/atcoder/live_library/blob/master/mint.cpp> // <https://noshi91.hatenablog.com/entry/2019/03/31/174006> // <https://ei1333.github.io/luzhiled/snippets/math/mod-int.html> // <https://gist.github.com/MiSawa/dc78c3eb3ca16051818759ea069e8ccb> // <https://github.com/drken1215/algorithm/blob/master/MathCombinatorics/mod.cpp> // combination: // <https://github.com/atcoder/live_library/blob/master/comb.cpp> // <https://github.com/drken1215/algorithm/blob/master/MathCombinatorics/mod.cpp> struct mint { ll x; constexpr mint(ll x = 0) noexcept : x((x % MOD + MOD) % MOD) {} constexpr mint& operator+=(const mint& a) noexcept { if ((x += a.x) >= MOD) x -= MOD; return *this; } constexpr mint& operator-=(const mint& a) noexcept { if ((x += MOD - a.x) >= MOD) x -= MOD; return *this; } constexpr mint& operator*=(const mint& a) noexcept { (x *= a.x) %= MOD; return *this; } constexpr mint& operator/=(const mint& a) noexcept { return *this *= a.inv(); } constexpr mint operator-() const noexcept { return mint(-x); } constexpr mint operator+(const mint& a) const noexcept { return mint(*this) += a; } constexpr mint operator-(const mint& a) const noexcept { return mint(*this) -= a; } constexpr mint operator*(const mint& a) const noexcept { return mint(*this) *= a; } constexpr mint operator/(const mint& a) const noexcept { return mint(*this) /= a; } constexpr bool operator==(const mint& a) const noexcept { return x == a.x; } constexpr bool operator!=(const mint& a) const noexcept { return x != a.x; } constexpr mint pow(ll n) const { if (n == 0) return 1; mint res = pow(n >> 1); res *= res; if (n & 1) res *= *this; return res; } constexpr mint inv() const { return pow(MOD - 2); } friend istream& operator>>(istream& is, mint& a) noexcept { ll v; is >> v; a = mint(v); return is; } friend ostream& operator<<(ostream& os, const mint& a) noexcept { return os << a.x; } }; using VM = vector<mint>; using VVM = vector<VM>; using VVVM = vector<VVM>; using VVVVM = vector<VVVM>; struct combination { vector<mint> fact_, ifact_, inv_; int n_; combination() {} combination(int n) : fact_(n+1,0), ifact_(n+1,0), inv_(n+1,0) { assert(n != 0); assert(n < MOD); n_ = n; fact_[0] = 1; fact_[1] = 1; ifact_[0] = 1; ifact_[1] = 1; inv_[1] = 1; for(int i = 2; i <= n; ++i) { fact_[i] = fact_[i-1] * i; inv_[i] = -inv_[MOD%i] * (MOD/i); ifact_[i] = ifact_[i-1] * inv_[i]; } } mint P(const int& n, const int& k) const noexcept { if (n < 0 || k < 0 || n < k) return 0; assert(n <= n_); return fact_[n] * ifact_[n-k]; } mint C(const int& n, const int& k) const noexcept { if (n < 0 || k < 0 || n < k) return 0; assert(n <= n_); return fact_[n] * ifact_[n-k] * ifact_[k]; } mint H(const int& n, const int& k) const noexcept { if (n == 0 && k == 0) return 1; if (n < 0 || k < 0) return 0; assert(n + k - 1 <= n_); return C(n + k - 1, k); } mint fact(const int& n) const noexcept { assert(n <= n_); if (n < 0) return 0; return fact_[n]; } mint ifact(const int& n) const noexcept { assert(n <= n_); if (n < 0) return 0; return ifact_[n]; } mint inv(const int& n) const noexcept { assert(n <= n_); if (n < 0) return 0; return inv_[n]; } }; template<class T = ll> vector<T> compress(vector<T>& X) { int N = X.size(); vector<T> XS(X); // 圧縮前の座標配列 (圧縮後の座標と1対1対応) // 重複削除 sort(XS.begin(), XS.end()); XS.erase(unique(XS.begin(), XS.end()), XS.end()); // 圧縮後の座標の割り当て for (int i = 0; i < N; i++) { X[i] = lower_bound(XS.begin(), XS.end(), X[i]) - XS.begin(); } return XS; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); ll N; input(N); VLL A(N); REP(i,N) input(A[i]); auto ZA = compress(A); ll M = SZ(ZA); VM pow2(N+1,1); FOR(i,1,N+1) pow2[i] = pow2[i-1] * 2; fenwick_tree<mint> fw_L(M), fw_R(M); REP(i,N) { fw_R.add(A[i], pow2[N-1 - i]); } mint ans = 0; REP(i,N) { fw_R.add(A[i], -pow2[N-1 - i]); ans += fw_L.sum(0, A[i]) * fw_R.sum(0, A[i]); ans += fw_L.sum(A[i]+1,M) * fw_R.sum(A[i],M); fw_L.add(A[i], pow2[i]); } print(ans); return 0; }