結果

問題 No.1975 Zigzag Sequence
ユーザー DemystifyDemystify
提出日時 2022-06-10 22:10:19
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 53 ms / 2,000 ms
コード長 10,047 bytes
コンパイル時間 2,659 ms
コンパイル使用メモリ 215,840 KB
実行使用メモリ 7,296 KB
最終ジャッジ日時 2024-09-21 06:24:50
合計ジャッジ時間 4,727 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
// --------------------------------------------------------
#define FOR(i,l,r) for (ll i = (l); i < (r); ++i)
#define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i)
#define REP(i,n) FOR(i,0,n)
#define RREP(i,n) RFOR(i,0,n)
#define ALL(c) (c).begin(), (c).end()
#define RALL(c) (c).rbegin(), (c).rend()
#define SORT(c) sort(ALL(c))
#define RSORT(c) sort(RALL(c))
#define MIN(c) *min_element(ALL(c))
#define MAX(c) *max_element(ALL(c))
#define COUNT(c,v) count(ALL(c),(v))
#define SZ(c) ((ll)(c).size())
#define BIT(b,i) (((b)>>(i)) & 1)
#define PCNT(b) __builtin_popcountll(b)
#define P0(i) (((i) & 1) == 0)
#define P1(i) (((i) & 1) == 1)
#define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v)))
#define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v)))
#define UQ(c) SORT(c), (c).erase(unique(ALL(c)), (c).end())
#define elif else if
#ifdef _LOCAL
    #define debug_bar cerr << "--------------------\n";
    #define debug(x) cerr << "l." << __LINE__ << " : " << #x << " = " << (x) << '\n'
    #define debug_pair(x) cerr << "l." << __LINE__ << " : " << #x << " = (" << x.first << "," << x.second << ")\n";
    template<class T> void debug_line(const vector<T>& ans, int l, int r, int L = 0) { cerr << "l." << L << " :"; for (int i = l; i < r; i++) { cerr << ' ' << ans[i]; } cerr << '\n'; }
#else
    #define cerr if (false) cerr
    #define debug_bar
    #define debug(x)
    #define debug_pair(x)
    template<class T> void debug_line([[maybe_unused]] const vector<T>& ans, [[maybe_unused]] int l, [[maybe_unused]] int r, [[maybe_unused]] int L = 0) {}
#endif
template<class... T> void input(T&... a) { (cin >> ... >> a); }
void print() { cout << '\n'; }
template<class T> void print(const T& a) { cout << a << '\n'; }
template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; } cout << '\n'; }
template<class T> bool chmin(T& a, const T b) { if (b < a) { a = b; return 1; } return 0; }
template<class T> bool chmax(T& a, const T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); }
template<class T> vector<T> cumsum(const vector<T>& A, bool offset = true) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) { S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; }
ll mod(ll x, ll m) { assert(m != 0); return (x % m + m) % m; }
ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }
ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }
ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; }
pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); }
ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); }
ll digit_len(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; }
ll digit_sum(ll n) { assert(n >= 0); ll sum = 0; while (n > 0) { sum += n % 10; n /= 10; } return sum; }
ll digit_prod(ll n) { assert(n >= 0); if (n == 0) { return 0; } ll prod = 1; while (n > 0) { prod *= n % 10; n /= 10; } return prod; }
ll xor_sum(ll x) { assert(0 <= x); switch (x % 4) { case 0: return x; case 1: return 1; case 2: return x ^ 1; case 3: return 0; } assert(false); }
string toupper(const string& S) { string T(S); for (int i = 0; i < (int)T.size(); i++) { T[i] = toupper(T[i]); } return T; }
string tolower(const string& S) { string T(S); for (int i = 0; i < (int)T.size(); i++) { T[i] = tolower(T[i]); } return T; }
int a2i(const char& c) { assert(islower(c)); return (c - 'a'); }
int A2i(const char& c) { assert(isupper(c)); return (c - 'A'); }
int d2i(const char& d) { assert(isdigit(d)); return (d - '0'); }
char i2a(const int& i) { assert(0 <= i && i < 26); return ('a' + i); }
char i2A(const int& i) { assert(0 <= i && i < 26); return ('A' + i); }
char i2d(const int& i) { assert(0 <= i && i <= 9); return ('0' + i); }
using P = pair<ll,ll>;
using VP = vector<P>;
using VVP = vector<VP>;
using VS = vector<string>;
using VVS = vector<VS>;
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using VLL = vector<ll>;
using VVLL = vector<VLL>;
using VVVLL = vector<VVLL>;
using VB = vector<bool>;
using VVB = vector<VB>;
using VVVB = vector<VVB>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VLD = vector<ld>;
using VVLD = vector<VLD>;
using VVVLD = vector<VVLD>;
const ld EPS = 1e-10;
const ld PI  = acosl(-1.0);
constexpr ll MOD = 1000000007;
// constexpr ll MOD = 998244353;
constexpr int inf = (1 << 30) - 1;   // 1073741824 - 1
constexpr ll INF = (1LL << 62) - 1;  // 4611686018427387904 - 1
// --------------------------------------------------------
#include <atcoder/fenwicktree>
using namespace atcoder;


// References:
//   mint:
//     <https://github.com/atcoder/live_library/blob/master/mint.cpp>
//     <https://noshi91.hatenablog.com/entry/2019/03/31/174006>
//     <https://ei1333.github.io/luzhiled/snippets/math/mod-int.html>
//     <https://gist.github.com/MiSawa/dc78c3eb3ca16051818759ea069e8ccb>
//     <https://github.com/drken1215/algorithm/blob/master/MathCombinatorics/mod.cpp>
//   combination:
//     <https://github.com/atcoder/live_library/blob/master/comb.cpp>
//     <https://github.com/drken1215/algorithm/blob/master/MathCombinatorics/mod.cpp>

struct mint {
    ll x;
    constexpr mint(ll x = 0) noexcept : x((x % MOD + MOD) % MOD) {}

    constexpr mint& operator+=(const mint& a) noexcept {
        if ((x += a.x) >= MOD) x -= MOD;
        return *this;
    }
    constexpr mint& operator-=(const mint& a) noexcept {
        if ((x += MOD - a.x) >= MOD) x -= MOD;
        return *this;
    }
    constexpr mint& operator*=(const mint& a) noexcept { (x *= a.x) %= MOD; return *this; }
    constexpr mint& operator/=(const mint& a) noexcept { return *this *= a.inv(); }

    constexpr mint operator-() const noexcept { return mint(-x); }
    constexpr mint operator+(const mint& a) const noexcept { return mint(*this) += a; }
    constexpr mint operator-(const mint& a) const noexcept { return mint(*this) -= a; }
    constexpr mint operator*(const mint& a) const noexcept { return mint(*this) *= a; }
    constexpr mint operator/(const mint& a) const noexcept { return mint(*this) /= a; }
    constexpr bool operator==(const mint& a) const noexcept { return x == a.x; }
    constexpr bool operator!=(const mint& a) const noexcept { return x != a.x; }

    constexpr mint pow(ll n) const {
        if (n == 0) return 1;
        mint res = pow(n >> 1);
        res *= res;
        if (n & 1) res *= *this;
        return res;
    }
    constexpr mint inv() const { return pow(MOD - 2); }

    friend istream& operator>>(istream& is, mint& a) noexcept {
        ll v; is >> v;
        a = mint(v);
        return is;
    }
    friend ostream& operator<<(ostream& os, const mint& a) noexcept {
        return os << a.x;
    }
};
using VM = vector<mint>;
using VVM = vector<VM>;
using VVVM = vector<VVM>;
using VVVVM = vector<VVVM>;


struct combination {
    vector<mint> fact_, ifact_, inv_;
    int n_;
    combination() {}
    combination(int n) : fact_(n+1,0), ifact_(n+1,0), inv_(n+1,0) {
        assert(n != 0);
        assert(n < MOD);
        n_ = n;
        fact_[0] = 1; fact_[1] = 1;
        ifact_[0] = 1; ifact_[1] = 1;
        inv_[1] = 1;
        for(int i = 2; i <= n; ++i) {
            fact_[i] = fact_[i-1] * i;
            inv_[i] = -inv_[MOD%i] * (MOD/i);
            ifact_[i] = ifact_[i-1] * inv_[i];
        }
    }

    mint P(const int& n, const int& k) const noexcept {
        if (n < 0 || k < 0 || n < k) return 0;
        assert(n <= n_);
        return fact_[n] * ifact_[n-k];
    }
    mint C(const int& n, const int& k) const noexcept {
        if (n < 0 || k < 0 || n < k) return 0;
        assert(n <= n_);
        return fact_[n] * ifact_[n-k] * ifact_[k];
    }
    mint H(const int& n, const int& k) const noexcept {
        if (n == 0 && k == 0) return 1;
        if (n < 0 || k < 0) return 0;
        assert(n + k - 1 <= n_);
        return C(n + k - 1, k);
    }
    mint fact(const int& n) const noexcept {
        assert(n <= n_);
        if (n < 0) return 0;
        return fact_[n];
    }
    mint ifact(const int& n) const noexcept {
        assert(n <= n_);
        if (n < 0) return 0;
        return ifact_[n];
    }
    mint inv(const int& n) const noexcept {
        assert(n <= n_);
        if (n < 0) return 0;
        return inv_[n];
    }
};


template<class T = ll>
vector<T> compress(vector<T>& X) {
    int N = X.size();
    vector<T> XS(X);  // 圧縮前の座標配列 (圧縮後の座標と1対1対応)

    // 重複削除
    sort(XS.begin(), XS.end());
    XS.erase(unique(XS.begin(), XS.end()), XS.end());

    // 圧縮後の座標の割り当て
    for (int i = 0; i < N; i++) {
        X[i] = lower_bound(XS.begin(), XS.end(), X[i]) - XS.begin();
    }
    return XS;
}


int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);

    ll N; input(N);
    VLL A(N); REP(i,N) input(A[i]);

    auto ZA = compress(A);
    ll M = SZ(ZA);

    VM pow2(N+1,1); FOR(i,1,N+1) pow2[i] = pow2[i-1] * 2;

    fenwick_tree<mint> fw_L(M), fw_R(M);
    REP(i,N) {
        fw_R.add(A[i], pow2[N-1 - i]);
    }

    mint ans = 0;
    REP(i,N) {
        fw_R.add(A[i], -pow2[N-1 - i]);

        ans += fw_L.sum(0, A[i]) * fw_R.sum(0, A[i]);
        ans += fw_L.sum(A[i]+1,M) * fw_R.sum(A[i]+1,M);

        fw_L.add(A[i], pow2[i]);
    }
    print(ans);

    return 0;
}
0