結果
問題 | No.1977 Extracting at Constant Intervals |
ユーザー | xyz2606 |
提出日時 | 2022-06-10 23:08:28 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,100 bytes |
コンパイル時間 | 2,768 ms |
コンパイル使用メモリ | 151,200 KB |
実行使用メモリ | 8,532 KB |
最終ジャッジ日時 | 2024-09-21 06:47:59 |
合計ジャッジ時間 | 4,455 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 4 ms
5,376 KB |
testcase_03 | AC | 15 ms
5,504 KB |
testcase_04 | AC | 4 ms
5,376 KB |
testcase_05 | AC | 17 ms
5,632 KB |
testcase_06 | AC | 10 ms
5,376 KB |
testcase_07 | AC | 13 ms
5,376 KB |
testcase_08 | AC | 11 ms
5,376 KB |
testcase_09 | AC | 6 ms
5,376 KB |
testcase_10 | AC | 14 ms
5,504 KB |
testcase_11 | AC | 3 ms
5,376 KB |
testcase_12 | WA | - |
testcase_13 | AC | 15 ms
5,376 KB |
testcase_14 | AC | 20 ms
5,632 KB |
testcase_15 | AC | 10 ms
5,376 KB |
testcase_16 | AC | 19 ms
5,504 KB |
testcase_17 | AC | 20 ms
5,376 KB |
testcase_18 | AC | 9 ms
5,376 KB |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | AC | 11 ms
5,376 KB |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | AC | 10 ms
5,376 KB |
ソースコード
#include<vector> #include<set> #include<map> #include<queue> #include<string> #include<algorithm> #include<iostream> #include<bitset> #include<functional> #include<chrono> #include<numeric> #include<cstdio> #include<cstring> #include<cstdlib> #include<cassert> #include<cmath> #include<iomanip> #include<random> #include<ctime> #include<complex> #include<type_traits> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set; typedef long long LL; typedef double D; #define all(v) (v).begin(), (v).end() mt19937 gene(chrono::system_clock::now().time_since_epoch().count()); typedef complex<double> Complex; #define fi first #define se second #define ins insert #define pb push_back inline char GET_CHAR(){ const int maxn = 131072; static char buf[maxn],*p1=buf,*p2=buf; return p1==p2&&(p2=(p1=buf)+fread(buf,1,maxn,stdin),p1==p2)?EOF:*p1++; } inline int getInt() { int res(0); char c = getchar(); while(c < '0') c = getchar(); while(c >= '0') { res = res * 10 + (c - '0'); c = getchar(); } return res; } inline LL fastpo(LL x, LL n, LL mod) { LL res(1); while(n) { if(n & 1) { res = res * (LL)x % mod; } x = x * (LL) x % mod; n /= 2; } return res; } template<LL mod> struct Num { LL a; Num operator + (const Num & b) { return Num{(a + b.a) % mod}; } Num operator - (const Num & b) { return Num{(a - b.a + mod) % mod}; } Num operator * (const Num & b) { return Num{a * b.a % mod}; } Num operator / (const Num & b) { return Num{a * fastpo(b.a, mod - 2, mod) % mod}; } void operator += (const Num & b) {if((a += b.a) >= mod) a -= mod;} void operator -= (const Num & b) {if((a -= b.a) < 0) a += mod;} void operator *= (const Num & b) { a = a * b.a % mod; } void operator /= (const Num & b) { a = a * fastpo(b.a, mod - 2, mod) % mod; } void operator = (const Num & b) { a = b.a; } void operator = (const LL & b) { a = b; } }; template<LL mod> ostream & operator << (ostream & os, const Num<mod> & a) { os << a.a; return os; } LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } inline string itoa(LL x, int width = 0) { string res; if(x == 0) res.push_back('0'); while(x) { res.push_back('0' + x % 10); x /= 10; } while((int)res.size() < width) res.push_back('0'); reverse(res.begin(), res.end()); return res; } const int _B = 131072; char buf[_B]; int _bl = 0; inline void flush() { fwrite(buf, 1, _bl, stdout); _bl = 0; } __inline void _putchar(char c) { if(_bl == _B) flush(); buf[_bl++] = c; } inline void print(LL x, char c) { static char tmp[20]; int l = 0; if(!x) tmp[l++] = '0'; else { while(x) { tmp[l++] = x % 10 + '0'; x /= 10; } } for(int i = l - 1; i >= 0; i--) _putchar(tmp[i]); _putchar(c); } typedef double C; struct P { C x, y; void scan() { double _x, _y; scanf("%lf%lf", &_x, &_y); x = _x; y = _y; } void print() { cout << '(' << x << ' ' << y << ')' << endl; } P operator + (const P & b) const { return P{x + b.x, y + b.y}; } P operator - (const P & b) const { return P{x - b.x, y - b.y}; } C operator * (const P & b) const { return x * b.y - y * b.x; } C operator % (const P & b) const { return x * b.x + y * b.y; } }; P operator * (const C & x, const P & b) { return P{x * b.x, x * b.y}; } const int N = 300033; const int LOG = 20; const int mod = 1e9 + 7; const int inf = 1e9 + 7; int n, m; int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; int rela[N]; int getr(int x) { int p = x; while(rela[p] != p) p = rela[p]; int p1 = p; p = x; while(rela[p] != p) { int p2 = rela[p]; rela[p] = p1; p = p2; } return p1; } int a[N], tp[N], pos[N], vst[N]; vector<vector<int> > tot; int get_interval(const vector<int> & vec, int s, int len) { int n = vec.size(); if(len == 0) return 0; if(s + len - 1 < n) { return vec[s + len - 1] - (s == 0 ? 0 : vec[s - 1]); }else { return vec[n - 1] - vec[s - 1] + vec[len - (n - s) - 1]; } } int main() { int n, m; LL l; scanf("%d%d%lld", &n, &m, &l); for(int i = 0; i < n; i++) { scanf("%d", &a[i]); } LL len = n * (LL)m; for(int i = 0; i < n; i++) { if(vst[i]) continue; tot.pb(vector<int>()); for(int j = i; ; j = (j + l) % n) { vst[j] = true; tp[j] = tot.size() - 1; pos[j] = tot.back().size(); tot.back().pb(tot.back().size() == 0 ? a[j] : tot.back().back() + a[j]); //cout << j << ' ' << pos[j] << ' ' << tot.back().back() << endl; if((j + l) % n == i) break; } } LL ans = inf * (LL)-inf; for(LL s = l - 1; s >= l - n && s >= 0; s--) { LL k = (len - s + l - 1) / l; LL sm = s % n; //cout << k << ' ' << sm << endl; //cout << "!" << tp[sm] << ' ' << tot[tp[sm]].size() << ' ' << tot[tp[sm]].back() << endl; LL tmp = (LL)(k / tot[tp[sm]].size()) * tot[tp[sm]].back(); tmp = tmp + get_interval(tot[tp[sm]], pos[sm], k % tot[tp[sm]].size()); ans = max(ans, tmp); } cout << ans << endl; }