結果
問題 | No.1977 Extracting at Constant Intervals |
ユーザー |
|
提出日時 | 2022-06-10 23:16:27 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 208 ms / 2,000 ms |
コード長 | 9,578 bytes |
コンパイル時間 | 2,915 ms |
コンパイル使用メモリ | 223,096 KB |
最終ジャッジ日時 | 2025-01-29 20:18:04 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 31 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (ll i = 0; i < n; i++)#define rep2(i, x, n) for (ll i = x; i <= n; i++)#define rep3(i, x, n) for (ll i = x; i >= n; i--)#define each(e, v) for (auto &e : v)#define pb push_back#define eb emplace_back#define all(x) x.begin(), x.end()#define rall(x) x.rbegin(), x.rend()#define sz(x) (int)x.size()using ll = long long;using pii = pair<int, int>;using pil = pair<int, ll>;using pli = pair<ll, int>;using pll = pair<ll, ll>;template <typename T>bool chmax(T &x, const T &y) {return (x < y) ? (x = y, true) : false;}template <typename T>bool chmin(T &x, const T &y) {return (x > y) ? (x = y, true) : false;}template <typename T>int flg(T x, int i) {return (x >> i) & 1;}template <typename T>void print(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}template <typename T>void printn(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << '\n';}template <typename T>int lb(const vector<T> &v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T>int ub(const vector<T> &v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T>void rearrange(vector<T> &v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}template <typename T>vector<int> id_sort(const vector<T> &v, bool greater = false) {int n = v.size();vector<int> ret(n);iota(begin(ret), end(ret), 0);sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });return ret;}template <typename S, typename T>pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first + q.first, p.second + q.second);}template <typename S, typename T>pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first - q.first, p.second - q.second);}template <typename S, typename T>istream &operator>>(istream &is, pair<S, T> &p) {S a;T b;is >> a >> b;p = make_pair(a, b);return is;}template <typename S, typename T>ostream &operator<<(ostream &os, const pair<S, T> &p) {return os << p.first << ' ' << p.second;}struct io_setup {io_setup() {ios_base::sync_with_stdio(false);cin.tie(NULL);cout << fixed << setprecision(15);}} io_setup;const int inf = (1 << 30) - 1;const ll INF = (1LL << 60) - 1;const int MOD = 1000000007;// const int MOD = 998244353;template <int mod>struct Mod_Int {int x;Mod_Int() : x(0) {}Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}static int get_mod() { return mod; }Mod_Int &operator+=(const Mod_Int &p) {if ((x += p.x) >= mod) x -= mod;return *this;}Mod_Int &operator-=(const Mod_Int &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}Mod_Int &operator*=(const Mod_Int &p) {x = (int)(1LL * x * p.x % mod);return *this;}Mod_Int &operator/=(const Mod_Int &p) {*this *= p.inverse();return *this;}Mod_Int &operator++() { return *this += Mod_Int(1); }Mod_Int operator++(int) {Mod_Int tmp = *this;++*this;return tmp;}Mod_Int &operator--() { return *this -= Mod_Int(1); }Mod_Int operator--(int) {Mod_Int tmp = *this;--*this;return tmp;}Mod_Int operator-() const { return Mod_Int(-x); }Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }bool operator==(const Mod_Int &p) const { return x == p.x; }bool operator!=(const Mod_Int &p) const { return x != p.x; }Mod_Int inverse() const {assert(*this != Mod_Int(0));return pow(mod - 2);}Mod_Int pow(long long k) const {Mod_Int now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }friend istream &operator>>(istream &is, Mod_Int &p) {long long a;is >> a;p = Mod_Int<mod>(a);return is;}};using mint = Mod_Int<MOD>;template <typename T>struct Number_Theoretic_Transform {static int max_base;static T root;static vector<T> r, ir;Number_Theoretic_Transform() {}static void init() {if (!r.empty()) return;int mod = T::get_mod();int tmp = mod - 1;root = 2;while (root.pow(tmp >> 1) == 1) root++;max_base = 0;while (tmp % 2 == 0) tmp >>= 1, max_base++;r.resize(max_base), ir.resize(max_base);for (int i = 0; i < max_base; i++) {r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 の 2^(i+2) 乗根ir[i] = r[i].inverse(); // ir[i] := 1/r[i]}}static void ntt(vector<T> &a) {init();int n = a.size();assert((n & (n - 1)) == 0);assert(n <= (1 << max_base));for (int k = n; k >>= 1;) {T w = 1;for (int s = 0, t = 0; s < n; s += 2 * k) {for (int i = s, j = s + k; i < s + k; i++, j++) {T x = a[i], y = w * a[j];a[i] = x + y, a[j] = x - y;}w *= r[__builtin_ctz(++t)];}}}static void intt(vector<T> &a) {init();int n = a.size();assert((n & (n - 1)) == 0);assert(n <= (1 << max_base));for (int k = 1; k < n; k <<= 1) {T w = 1;for (int s = 0, t = 0; s < n; s += 2 * k) {for (int i = s, j = s + k; i < s + k; i++, j++) {T x = a[i], y = a[j];a[i] = x + y, a[j] = w * (x - y);}w *= ir[__builtin_ctz(++t)];}}T inv = T(n).inverse();for (auto &e : a) e *= inv;}static vector<T> convolve(vector<T> a, vector<T> b) {if (a.empty() || b.empty()) return {};int k = (int)a.size() + (int)b.size() - 1, n = 1;while (n < k) n <<= 1;a.resize(n), b.resize(n);ntt(a), ntt(b);for (int i = 0; i < n; i++) a[i] *= b[i];intt(a), a.resize(k);return a;}};template <typename T>int Number_Theoretic_Transform<T>::max_base = 0;template <typename T>T Number_Theoretic_Transform<T>::root = T();template <typename T>vector<T> Number_Theoretic_Transform<T>::r = vector<T>();template <typename T>vector<T> Number_Theoretic_Transform<T>::ir = vector<T>();using NTT = Number_Theoretic_Transform<mint>;const int m1 = 880803841; // 105*2^23 + 1const int m2 = 897581057; // 107*2^23 + 1const int m3 = 998244353; // 119*2^23 + 1struct Fast_Fourier_Transform_Integer {using mint_1 = Mod_Int<m1>;using mint_2 = Mod_Int<m2>;using mint_3 = Mod_Int<m3>;using NTT_1 = Number_Theoretic_Transform<mint_1>;using NTT_2 = Number_Theoretic_Transform<mint_2>;using NTT_3 = Number_Theoretic_Transform<mint_3>;Fast_Fourier_Transform_Integer() {}static vector<long long> convolve(const vector<long long> &a, const vector<long long> &b) {if (a.empty() || b.empty()) return {};int n = a.size(), m = b.size();vector<mint_1> a1(n), b1(m);vector<mint_2> a2(n), b2(m);vector<mint_3> a3(n), b3(m);for (int i = 0; i < n; i++) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i];for (int i = 0; i < m; i++) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i];vector<mint_1> c1 = NTT_1::convolve(a1, b1);vector<mint_2> c2 = NTT_2::convolve(a2, b2);vector<mint_3> c3 = NTT_3::convolve(a3, b3);mint_2 m1_inv_m2 = mint_2(m1).inverse();mint_3 m1m2_inv_m3 = (mint_3(m1) * m2).inverse();vector<long long> c(n + m - 1);for (int i = 0; i < n + m - 1; i++) {long long t1 = (m1_inv_m2 * (c2[i].x - c1[i].x)).x;long long t = (m1m2_inv_m3 * (c3[i].x - t1 * m1 - c1[i].x)).x;if (t > m3 - t) t -= m3;c[i] = t * m1 * m2 + t1 * m1 + c1[i].x;}return c;}};using FFT = Fast_Fourier_Transform_Integer;int main() {ll N, M, L;cin >> N >> M >> L;vector<ll> a(N, 0);rep(i, N) cin >> a[i];vector<ll> cnt(N, 0);ll K = (N * M + L - 1) / L;ll P = L * (K - 1);// cout << K << ' ' << P << '\n';rep(i, N) {ll x = L * i % N;if (K > i) cnt[x] += (K - i + N - 1) / N;}vector<ll> b(2 * N), c(N);rep(i, 2 * N) b[i] = a[i % N];rep(i, N) c[i] = cnt[N - 1 - i];auto f = FFT::convolve(b, c);vector<ll> s(N, 0);rep(i, N) s[i] = f[N - 1 + i];ll ans = -INF;rep(i, N) {if (P + i < N * M) chmax(ans, s[i]);ll X = (L - i + N - 1) / N;ll Y = i + N * (X - 1);if (P + Y >= N * M) chmax(ans, s[i] - a[(P + i) % N]);}cout << ans << '\n';}