結果
問題 | No.1974 2x2 Flipper |
ユーザー | chineristAC |
提出日時 | 2022-06-10 23:18:28 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 158 ms / 2,000 ms |
コード長 | 2,936 bytes |
コンパイル時間 | 208 ms |
コンパイル使用メモリ | 82,652 KB |
実行使用メモリ | 87,296 KB |
最終ジャッジ日時 | 2024-09-21 07:11:07 |
合計ジャッジ時間 | 5,468 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 51 ms
56,576 KB |
testcase_01 | AC | 75 ms
77,312 KB |
testcase_02 | AC | 57 ms
66,688 KB |
testcase_03 | AC | 122 ms
77,952 KB |
testcase_04 | AC | 92 ms
77,676 KB |
testcase_05 | AC | 82 ms
78,628 KB |
testcase_06 | AC | 106 ms
77,748 KB |
testcase_07 | AC | 95 ms
77,228 KB |
testcase_08 | AC | 71 ms
77,312 KB |
testcase_09 | AC | 106 ms
78,072 KB |
testcase_10 | AC | 73 ms
77,440 KB |
testcase_11 | AC | 97 ms
77,824 KB |
testcase_12 | AC | 119 ms
78,976 KB |
testcase_13 | AC | 100 ms
77,568 KB |
testcase_14 | AC | 84 ms
77,252 KB |
testcase_15 | AC | 131 ms
77,952 KB |
testcase_16 | AC | 71 ms
77,312 KB |
testcase_17 | AC | 111 ms
77,940 KB |
testcase_18 | AC | 69 ms
76,928 KB |
testcase_19 | AC | 74 ms
77,244 KB |
testcase_20 | AC | 90 ms
77,368 KB |
testcase_21 | AC | 150 ms
79,488 KB |
testcase_22 | AC | 148 ms
79,104 KB |
testcase_23 | AC | 156 ms
78,976 KB |
testcase_24 | AC | 158 ms
87,296 KB |
testcase_25 | AC | 52 ms
56,192 KB |
ソースコード
def isPrimeMR(n): if n==1: return 0 d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17] if n in L: return 1 for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): from math import gcd m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret import sys,random,bisect from collections import deque,defaultdict,Counter from heapq import heapify,heappop,heappush from itertools import cycle, permutations from math import log,gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) H,W = mi() if H&1==0 and W&1==0: print(H*W) for _ in range(H): print(*[1]*W) elif H&1==1 and W&1==0: print(H*W-W) for _ in range(H-1): print(*[1]*W) print(*[0]*W) elif H&1==0 and W&1==1: print(H*W-H) for _ in range(H): print(*([1]*(W-1)+[0])) else: if H <= W: print(H*W-W) res = [[1]*W for i in range(H)] for i in range(H): res[i][i] = 0 for j in range(H,W): res[0][j] = 0 for i in range(H): print(*res[i]) else: print(H*W-H) res = [[1]*W for i in range(H)] for i in range(W): res[i][i] = 0 for j in range(W,H): res[j][0] = 0 for i in range(H): print(*res[i])