結果
問題 | No.1973 Divisor Sequence |
ユーザー | Shirotsume |
提出日時 | 2022-06-11 00:14:20 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 2,105 bytes |
コンパイル時間 | 168 ms |
コンパイル使用メモリ | 82,216 KB |
実行使用メモリ | 494,940 KB |
最終ジャッジ日時 | 2024-09-21 07:33:41 |
合計ジャッジ時間 | 26,624 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
61,200 KB |
testcase_01 | AC | 43 ms
54,668 KB |
testcase_02 | TLE | - |
testcase_03 | AC | 159 ms
109,512 KB |
testcase_04 | AC | 1,279 ms
309,920 KB |
testcase_05 | AC | 295 ms
175,964 KB |
testcase_06 | AC | 1,252 ms
373,888 KB |
testcase_07 | AC | 251 ms
156,520 KB |
testcase_08 | AC | 731 ms
323,836 KB |
testcase_09 | AC | 1,145 ms
279,284 KB |
testcase_10 | AC | 1,430 ms
331,928 KB |
testcase_11 | AC | 233 ms
139,316 KB |
testcase_12 | AC | 1,144 ms
341,224 KB |
testcase_13 | AC | 359 ms
187,372 KB |
testcase_14 | AC | 703 ms
281,700 KB |
testcase_15 | AC | 1,880 ms
355,704 KB |
testcase_16 | AC | 1,738 ms
417,828 KB |
testcase_17 | AC | 1,149 ms
288,860 KB |
testcase_18 | AC | 122 ms
93,852 KB |
testcase_19 | AC | 1,474 ms
356,616 KB |
testcase_20 | AC | 274 ms
165,336 KB |
testcase_21 | AC | 1,649 ms
460,080 KB |
testcase_22 | AC | 1,510 ms
357,180 KB |
testcase_23 | AC | 754 ms
283,588 KB |
testcase_24 | TLE | - |
ソースコード
from collections import Counter import sys input = lambda: sys.stdin.readline().rstrip() ii = lambda: int(input()) mi = lambda: map(int, input().split()) li = lambda: list(mi()) INF = 2 ** 63 - 1 mod = 10 ** 9 + 7 from math import gcd def isprime(n): if n <= 2: return n == 2 if n % 2 == 0: return False s = 0 t = n - 1 while t % 2 == 0: s += 1 t //= 2 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37]: if a >= n: break x = pow(a, t, n) if x == 1 or x == n - 1: continue for _ in range(s): x = (x * x) % n if x == n - 1: break if x == n - 1: continue return False return True def Pollad(N): if N % 2 == 0: return 2 if isprime(N): return N def f(x): return (x * x + 1) % N step = 0 while True: step += 1 x = step y = f(x) while True: p = gcd(y - x + N, N) if p == 0 or p == N: break if p != 1: return p x = f(x) y = f(f(y)) def Primefact(N): if N == 1: return [] q = [] q.append(N) ret = [] while q: now = q.pop() if now == 1: continue p = Pollad(now) if p == now: ret.append(p) else: q.append(p) q.append(now // p) return ret n, m = mi() D = Counter(Primefact(m)) def solve(n, c): dp = [[0] * 40 for _ in range(n)] for i in range(c + 1): dp[0][i] = 1 for i in range(n - 1): DP = [0] * 40 DP[0] = dp[i][0] for j in range(39): DP[j + 1] += DP[j] + dp[i][j + 1] DP[j + 1] %= mod for j in range(40): if j > c: break dp[i + 1][j] += DP[c - j] dp[i + 1][j] %= mod return sum(dp[n - 1]) % mod ans = 1 for v, c in D.items(): ans *= solve(n, c) ans %= mod print(ans)