結果

問題 No.1973 Divisor Sequence
ユーザー terasa
提出日時 2022-06-11 11:18:49
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 249 ms / 2,000 ms
コード長 2,194 bytes
コンパイル時間 155 ms
コンパイル使用メモリ 82,336 KB
実行使用メモリ 77,696 KB
最終ジャッジ日時 2024-09-21 20:11:09
合計ジャッジ時間 3,003 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
import pypyjit
import itertools
import heapq
import math
from collections import deque, defaultdict
import bisect
input = sys.stdin.readline
sys.setrecursionlimit(10 ** 6)
pypyjit.set_param('max_unroll_recursion=-1')
def index_lt(a, x):
'return largest index s.t. A[i] < x or -1 if it does not exist'
return bisect.bisect_left(a, x) - 1
def index_le(a, x):
'return largest index s.t. A[i] <= x or -1 if it does not exist'
return bisect.bisect_right(a, x) - 1
def index_gt(a, x):
'return smallest index s.t. A[i] > x or len(a) if it does not exist'
return bisect.bisect_right(a, x)
def index_ge(a, x):
'return smallest index s.t. A[i] >= x or len(a) if it does not exist'
return bisect.bisect_left(a, x)
class Matpow:
def __init__(self, N, A, p):
self.N = N
self.A = A
self.p = p
self.digit = 60
self.doubling = [None] * self.digit
self.doubling[0] = A
for i in range(1, self.digit):
self.doubling[i] = self.mul(self.doubling[i - 1], self.doubling[i - 1])
def pow(self, n):
E = [[1 if i == j else 0 for j in range(self.N)] for i in range(self.N)]
acc = E
for k in range(self.digit):
if n & (1 << k):
acc = self.mul(acc, self.doubling[k])
return acc
def mul(self, A, B):
C = [[0 for _ in range(self.N)] for _ in range(self.N)]
for i in range(self.N):
for j in range(self.N):
for k in range(self.N):
C[i][j] += A[i][k] * B[k][j]
C[i][j] %= self.p
return C
N, M = map(int, input().split())
mod = 10 ** 9 + 7
n = M
factors = defaultdict(int)
for i in range(2, M + 1):
if i * i > M:
break
while n % i == 0:
factors[i] += 1
n //= i
if n > 1:
factors[n] += 1
ans = 1
for v in factors.values():
A = []
for i in range(v + 1):
a = [1] * (v + 1 - i) + [0] * i
A.append(a)
An = Matpow(v + 1, A, mod).pow(N - 1)
acc = 0
for i in range(v + 1):
for j in range(v + 1):
acc += An[i][j]
ans *= acc
ans %= mod
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0