結果
問題 | No.1760 Setwise Coprime |
ユーザー | akakimidori |
提出日時 | 2022-06-11 11:30:07 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 17 ms / 2,000 ms |
コード長 | 10,461 bytes |
コンパイル時間 | 12,756 ms |
コンパイル使用メモリ | 391,592 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-21 20:28:05 |
合計ジャッジ時間 | 14,599 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 13 ms
5,376 KB |
testcase_22 | AC | 12 ms
5,376 KB |
testcase_23 | AC | 15 ms
5,376 KB |
testcase_24 | AC | 7 ms
5,376 KB |
testcase_25 | AC | 14 ms
5,376 KB |
testcase_26 | AC | 10 ms
5,376 KB |
testcase_27 | AC | 5 ms
5,376 KB |
testcase_28 | AC | 3 ms
5,376 KB |
testcase_29 | AC | 15 ms
5,376 KB |
testcase_30 | AC | 16 ms
5,376 KB |
testcase_31 | AC | 6 ms
5,376 KB |
testcase_32 | AC | 14 ms
5,376 KB |
testcase_33 | AC | 9 ms
5,376 KB |
testcase_34 | AC | 16 ms
5,376 KB |
testcase_35 | AC | 13 ms
5,376 KB |
testcase_36 | AC | 17 ms
5,376 KB |
testcase_37 | AC | 16 ms
5,376 KB |
testcase_38 | AC | 16 ms
5,376 KB |
ソースコード
// 包除することを考えると // A, B は交差しない // A, B は非空 // A, B の要素はそれぞれx, y で割り切れる // というのが計算できるといい // f(x, y) が求めたいそれとしよう // z = lcm(x, y) と置くと // 3: N/z // 1: N/x-N/z // 2: N/y-N/z // // f(x, y) = 2^(C_x - C_z) * 2^(C_y - C_z) * 3^(C_z) - 2^(C_x) - 2^(C_y) + 1 // 後ろ3項の計算は容易 // 最初の項?? // 2^(C_x) * 2^(C_y) * (3/4)^(C_lcm(x, y)) // C_x = floor(N / x) // lcm(x, y) が厄介 // N/xの種類数は少ないけどもこれ活かすのかな // いやlcm畳み込みで大体わかる // fn run() { input!(n: usize); let mut mo = vec![M::one(); n + 1]; mo[0] = M::zero(); enumerate_prime(n, |p| { for i in 1..=(n / p) { mo[i * p] = -mo[i * p]; } for i in 1..=(n / (p * p)) { mo[i * p * p] = M::zero(); } }); let two = M::new(2); let p = M::new(3) * M::new(4).inv(); let mut dp = vec![M::zero(); n + 1]; for i in 1..=n { dp[i] = mo[i] * two.pow((n / i) as u64); } let mo_sum = mo.iter().fold(M::zero(), |s, a| s + *a); let sum = dp.iter().fold(M::zero(), |s, a| s + *a); enumerate_prime(n, |p| { for i in 1..=(n / p) { dp[i * p] = dp[i * p] + dp[i]; } }); dp.iter_mut().for_each(|dp| *dp = *dp * *dp); enumerate_prime(n, |p| { for i in (1..=(n / p)).rev() { dp[i * p] = dp[i * p] - dp[i]; } }); let mut ans = M::zero(); ans += sum * sum - dp.iter().fold(M::zero(), |s, a| s + *a); ans += mo_sum * mo_sum; for i in 1..=n { ans += dp[i] * p.pow((n / i) as u64); ans -= mo[i] * two.pow((n / i) as u64) * mo_sum * M::new(2); } println!("{}", ans); } fn main() { run(); } // ---------- begin enumerate prime ---------- fn enumerate_prime<F>(n: usize, mut f: F) where F: FnMut(usize), { assert!(1 <= n && n <= 5 * 10usize.pow(8)); let batch = (n as f64).sqrt().ceil() as usize; let mut is_prime = vec![true; batch + 1]; for i in (2..).take_while(|p| p * p <= batch) { if is_prime[i] { let mut j = i * i; while let Some(p) = is_prime.get_mut(j) { *p = false; j += i; } } } let mut prime = vec![]; for (i, p) in is_prime.iter().enumerate().skip(2) { if *p && i <= n { f(i); prime.push(i); } } let mut l = batch + 1; while l <= n { let r = std::cmp::min(l + batch, n + 1); is_prime.clear(); is_prime.resize(r - l, true); for &p in prime.iter() { let mut j = (l + p - 1) / p * p - l; while let Some(is_prime) = is_prime.get_mut(j) { *is_prime = false; j += p; } } for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) { f(i + l); } l += batch; } } // ---------- end enumerate prime ---------- // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo<const M: u32>; impl<const M: u32> Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt<T>(u32, PhantomData<T>); impl<T> Clone for ModInt<T> { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl<T> Copy for ModInt<T> {} impl<T: Modulo> Add for ModInt<T> { type Output = ModInt<T>; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> AddAssign for ModInt<T> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<T: Modulo> Sub for ModInt<T> { type Output = ModInt<T>; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl<T: Modulo> SubAssign for ModInt<T> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<T: Modulo> Mul for ModInt<T> { type Output = ModInt<T>; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl<T: Modulo> MulAssign for ModInt<T> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<T: Modulo> Neg for ModInt<T> { type Output = ModInt<T>; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl<T> std::fmt::Display for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> std::fmt::Debug for ModInt<T> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl<T> Default for ModInt<T> { fn default() -> Self { Self::zero() } } impl<T: Modulo> std::str::FromStr for ModInt<T> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<T: Modulo> From<usize> for ModInt<T> { fn from(val: usize) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl<T: Modulo> From<u64> for ModInt<T> { fn from(val: u64) -> ModInt<T> { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl<T: Modulo> From<i64> for ModInt<T> { fn from(val: i64) -> ModInt<T> { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl<T> ModInt<T> { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl<T: Modulo> ModInt<T> { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc<T> { fact: Vec<ModInt<T>>, ifact: Vec<ModInt<T>>, inv: Vec<ModInt<T>>, } impl<T: Modulo> Precalc<T> { pub fn new(n: usize) -> Precalc<T> { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt<T> { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt<T> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<T> { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt<T> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt<ConstantModulo<998_244_353>>;