結果

問題 No.1975 Zigzag Sequence
ユーザー 👑 rin204
提出日時 2022-06-11 14:50:54
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 270 ms / 2,000 ms
コード長 1,511 bytes
コンパイル時間 331 ms
コンパイル使用メモリ 82,332 KB
実行使用メモリ 126,464 KB
最終ジャッジ日時 2024-09-22 01:40:22
合計ジャッジ時間 7,888 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

MOD = 10 ** 9 + 7
class Bit:
def __init__(self, n):
self.size = n
self.n0 = 1 << (n.bit_length() - 1)
self.tree = [0] * (n + 1)
def range_sum(self, l, r):
return self.sum(r - 1) - self.sum(l - 1)
def sum(self, i):
i += 1
s = 0
while i > 0:
s += self.tree[i]
s %= MOD
i -= i & -i
return s
def get(self, i):
return self.sum(i) - self.sum(i - 1)
def add(self, i, x):
i += 1
while i <= self.size:
self.tree[i] += x
self.tree[i] %= MOD
i += i & -i
def lower_bound(self, x):
pos = 0
plus = self.n0
while plus > 0:
if pos + plus <= self.size and self.tree[pos + plus] < x:
x -= self.tree[pos + plus]
pos += plus
plus //= 2
return pos
n = int(input())
A = list(map(int, input().split()))
se = set(A)
dic = {d:i for i, d in enumerate(sorted(se))}
A = [dic[a] for a in A]
l = len(se)
bit = Bit(l)
small = [0] * n
big = [0] * n
plus = 1
for i, a in enumerate(A):
small[i] = bit.sum(a - 1)
big[i] = bit.range_sum(a + 1, l)
bit.add(a, plus)
plus *= 2
plus %= MOD
bit = Bit(l)
plus = 1
for i in range(n - 1, -1, -1):
a = A[i]
small[i] *= bit.sum(a - 1)
big[i] *= bit.range_sum(a + 1, l)
bit.add(a, plus)
plus *= 2
plus %= MOD
ans = sum(big) + sum(small)
print(ans % MOD)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0