結果

問題 No.5006 Hidden Maze
ユーザー kyskys
提出日時 2022-06-12 14:54:39
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 2,188 bytes
コンパイル時間 494 ms
実行使用メモリ 106,672 KB
スコア 0
平均クエリ数 55.55
最終ジャッジ日時 2022-06-12 14:55:23
合計ジャッジ時間 35,687 ms
ジャッジサーバーID
(参考情報)
judge14 / judge13
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 RE -
testcase_34 RE -
testcase_35 RE -
testcase_36 RE -
testcase_37 RE -
testcase_38 RE -
testcase_39 RE -
testcase_40 RE -
testcase_41 RE -
testcase_42 RE -
testcase_43 RE -
testcase_44 RE -
testcase_45 RE -
testcase_46 RE -
testcase_47 RE -
testcase_48 RE -
testcase_49 RE -
testcase_50 RE -
testcase_51 RE -
testcase_52 RE -
testcase_53 RE -
testcase_54 RE -
testcase_55 RE -
testcase_56 RE -
testcase_57 RE -
testcase_58 RE -
testcase_59 RE -
testcase_60 RE -
testcase_61 RE -
testcase_62 RE -
testcase_63 RE -
testcase_64 RE -
testcase_65 RE -
testcase_66 RE -
testcase_67 RE -
testcase_68 RE -
testcase_69 RE -
testcase_70 RE -
testcase_71 RE -
testcase_72 RE -
testcase_73 RE -
testcase_74 RE -
testcase_75 RE -
testcase_76 RE -
testcase_77 RE -
testcase_78 RE -
testcase_79 RE -
testcase_80 RE -
testcase_81 RE -
testcase_82 RE -
testcase_83 RE -
testcase_84 RE -
testcase_85 RE -
testcase_86 RE -
testcase_87 RE -
testcase_88 RE -
testcase_89 RE -
testcase_90 RE -
testcase_91 RE -
testcase_92 RE -
testcase_93 RE -
testcase_94 RE -
testcase_95 RE -
testcase_96 RE -
testcase_97 RE -
testcase_98 RE -
testcase_99 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
input = sys.stdin.readline
def iinput(): return int(input())
def sinput(): return input().rstrip()
def i0input(): return int(input()) - 1
def linput(): return list(input().split())
def liinput(): return list(map(int, input().split()))
def miinput(): return map(int, input().split())
def li0input(): return list(map(lambda x: int(x) - 1, input().split()))
def mi0input(): return map(lambda x: int(x) - 1, input().split())
INF = 10**20
MOD = 1000000007
from random import random, seed
seed(101010)

def random_direction(p):
    for i in range(3):
        p[i+1] += p[i]
    r = random()
    for i in range(4):
        if p[i] > r:
            return i

H, W, p = liinput()
# URDL
probability = [[[0.75] * W for _ in [0] * H] for _ in [0] * 4]
p /= 100
direction_inv = {'U': 0, 'R': 1, 'D': 2, 'L': 3}
direction = 'URDL'
direction_coord = [(-1, 0), (0, 1), (1, 0), (0, -1)]

for i in range(W):
    probability[0][0][i] = 0
    probability[2][-1][i] = 0

for i in range(H):
    probability[1][i][-1] = 0
    probability[3][i][0] = 0

for _ in [0] * 1000:
    place = [0, 0]
    res = []
    for _ in [0] * 400:
        prob_tmp = []
        for i in range(4):
            prob_tmp.append(probability[i][place[0]][place[1]])
        sum_prob = sum(prob_tmp)
        for i in range(4):
            prob_tmp[i] /= sum_prob
        d = random_direction(prob_tmp)
        dr, dc = direction_coord[d]
        place[0] += dr
        place[1] += dc
        res.append(direction[d])
    print(''.join(res), flush=True)
    thr = iinput()
    if thr == -1:
        exit()
    place = [0, 0]
    for i in range(thr):
        d = direction_inv[res[i]]
        probability[d][place[0]][place[1]] = 1
        dr, dc = direction_coord[d]
        place[0] += dr
        place[1] += dc
        probability[(d+2)%2][place[0]][place[1]] = 1
    if len(res) > thr:
        d = direction_inv[res[thr]]
        q = probability[d][place[0]][place[1]]
        if q < 1:
            new_p = (p * q) / (p * q + 1 - q)
        probability[d][place[0]][place[1]] = new_p
        dr, dc = direction_coord[d]
        place[0] += dr
        place[1] += dc
        probability[(d+2)%2][place[0]][place[1]] = new_p
0