結果
問題 | No.5006 Hidden Maze |
ユーザー | bowwowforeach |
提出日時 | 2022-06-12 17:59:14 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 345 ms / 2,000 ms |
コード長 | 35,458 bytes |
コンパイル時間 | 3,282 ms |
実行使用メモリ | 22,876 KB |
スコア | 76,326 |
平均クエリ数 | 237.74 |
最終ジャッジ日時 | 2022-06-12 18:00:45 |
合計ジャッジ時間 | 17,354 ms |
ジャッジサーバーID (参考情報) |
judge15 / judge10 |
純コード判定しない問題か言語 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 51 ms
21,928 KB |
testcase_01 | AC | 93 ms
22,576 KB |
testcase_02 | AC | 25 ms
22,264 KB |
testcase_03 | AC | 34 ms
21,928 KB |
testcase_04 | AC | 68 ms
22,868 KB |
testcase_05 | AC | 96 ms
22,692 KB |
testcase_06 | AC | 69 ms
21,916 KB |
testcase_07 | AC | 29 ms
21,904 KB |
testcase_08 | AC | 84 ms
21,768 KB |
testcase_09 | AC | 300 ms
21,992 KB |
testcase_10 | AC | 37 ms
21,780 KB |
testcase_11 | AC | 41 ms
21,992 KB |
testcase_12 | AC | 56 ms
21,928 KB |
testcase_13 | AC | 55 ms
22,228 KB |
testcase_14 | AC | 67 ms
21,940 KB |
testcase_15 | AC | 22 ms
21,992 KB |
testcase_16 | AC | 41 ms
22,844 KB |
testcase_17 | AC | 34 ms
21,892 KB |
testcase_18 | AC | 52 ms
21,904 KB |
testcase_19 | AC | 25 ms
21,756 KB |
testcase_20 | AC | 31 ms
21,892 KB |
testcase_21 | AC | 38 ms
22,876 KB |
testcase_22 | AC | 26 ms
21,928 KB |
testcase_23 | AC | 48 ms
22,856 KB |
testcase_24 | AC | 160 ms
21,952 KB |
testcase_25 | AC | 119 ms
21,916 KB |
testcase_26 | AC | 298 ms
21,940 KB |
testcase_27 | AC | 233 ms
21,928 KB |
testcase_28 | AC | 30 ms
21,892 KB |
testcase_29 | AC | 305 ms
21,928 KB |
testcase_30 | AC | 37 ms
22,252 KB |
testcase_31 | AC | 27 ms
21,940 KB |
testcase_32 | AC | 87 ms
22,564 KB |
testcase_33 | AC | 52 ms
22,600 KB |
testcase_34 | AC | 29 ms
21,768 KB |
testcase_35 | AC | 75 ms
22,016 KB |
testcase_36 | AC | 241 ms
21,904 KB |
testcase_37 | AC | 294 ms
21,904 KB |
testcase_38 | AC | 311 ms
22,444 KB |
testcase_39 | AC | 30 ms
21,980 KB |
testcase_40 | AC | 43 ms
22,612 KB |
testcase_41 | AC | 46 ms
21,928 KB |
testcase_42 | AC | 28 ms
21,904 KB |
testcase_43 | AC | 92 ms
21,756 KB |
testcase_44 | AC | 29 ms
21,892 KB |
testcase_45 | AC | 72 ms
21,952 KB |
testcase_46 | AC | 345 ms
21,916 KB |
testcase_47 | AC | 49 ms
21,952 KB |
testcase_48 | AC | 110 ms
22,612 KB |
testcase_49 | AC | 311 ms
22,004 KB |
testcase_50 | AC | 40 ms
21,916 KB |
testcase_51 | AC | 29 ms
21,588 KB |
testcase_52 | AC | 64 ms
22,096 KB |
testcase_53 | AC | 128 ms
21,916 KB |
testcase_54 | AC | 123 ms
22,588 KB |
testcase_55 | AC | 66 ms
22,004 KB |
testcase_56 | AC | 54 ms
22,600 KB |
testcase_57 | AC | 62 ms
21,928 KB |
testcase_58 | AC | 25 ms
22,004 KB |
testcase_59 | AC | 24 ms
22,856 KB |
testcase_60 | AC | 37 ms
22,588 KB |
testcase_61 | AC | 46 ms
21,768 KB |
testcase_62 | AC | 45 ms
22,252 KB |
testcase_63 | AC | 44 ms
22,276 KB |
testcase_64 | AC | 83 ms
21,780 KB |
testcase_65 | AC | 28 ms
22,288 KB |
testcase_66 | AC | 67 ms
21,992 KB |
testcase_67 | AC | 50 ms
22,632 KB |
testcase_68 | AC | 81 ms
21,916 KB |
testcase_69 | AC | 31 ms
21,940 KB |
testcase_70 | AC | 25 ms
22,704 KB |
testcase_71 | AC | 45 ms
21,756 KB |
testcase_72 | AC | 25 ms
21,892 KB |
testcase_73 | AC | 44 ms
21,928 KB |
testcase_74 | AC | 29 ms
21,892 KB |
testcase_75 | AC | 241 ms
21,940 KB |
testcase_76 | AC | 26 ms
22,456 KB |
testcase_77 | AC | 82 ms
21,964 KB |
testcase_78 | AC | 51 ms
22,564 KB |
testcase_79 | AC | 304 ms
21,880 KB |
testcase_80 | AC | 26 ms
21,940 KB |
testcase_81 | AC | 43 ms
21,940 KB |
testcase_82 | AC | 41 ms
22,288 KB |
testcase_83 | AC | 24 ms
21,780 KB |
testcase_84 | AC | 73 ms
21,880 KB |
testcase_85 | AC | 95 ms
22,276 KB |
testcase_86 | AC | 23 ms
22,216 KB |
testcase_87 | AC | 185 ms
21,892 KB |
testcase_88 | AC | 316 ms
21,892 KB |
testcase_89 | AC | 303 ms
21,928 KB |
testcase_90 | AC | 47 ms
22,612 KB |
testcase_91 | AC | 27 ms
21,904 KB |
testcase_92 | AC | 43 ms
21,916 KB |
testcase_93 | AC | 49 ms
21,904 KB |
testcase_94 | AC | 297 ms
22,276 KB |
testcase_95 | AC | 24 ms
21,952 KB |
testcase_96 | AC | 25 ms
22,612 KB |
testcase_97 | AC | 316 ms
22,276 KB |
testcase_98 | AC | 108 ms
21,940 KB |
testcase_99 | AC | 54 ms
21,928 KB |
ソースコード
#define CODETEST 0 #define OPTUNE 0 #define PERFORMANCE 0 #define EVAL 0 #define TIME_LIMIT (1950) #define NOT_SUBMIT 0 #define VALIDATION 0 #define IO_FILE 0 #define OUTPUT_INFO 0 #define OUTPUT_FINAL_INFO 1 #define OUTPUT_LOG 0 #define OUTPUT_VISUAL 0 #define FIX_RESULT 0 #ifndef _MSC_VER #pragma GCC target ("avx2") #pragma GCC optimize "O3,omit-frame-pointer,inline" #pragma GCC optimize ("unroll-loops") #pragma GCC diagnostic ignored "-Wunused-parameter" #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wunused-variable" #endif #define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i, s, e) for (int i = int(s); i < int(e); ++i) #define RFOR(i, s, e) for (int i = int(e) - 1; i >= int(s); --i) #define REP(i, n) for (int i = 0, i##_size = int(n); i < i##_size; ++i) #define RREP(i, n) for (int i = int(n) - 1; i >= 0; --i) #define ALL(x) (x).begin(),(x).end() #define rep(i, n) for (int i = 0, i##_size = int(n); i < i##_size; ++i) #define rrep(i, n) for (int i = int(n) - 1; i >= 0; --i) #define all(x) (x).begin(),(x).end() template <class T> inline void chmin(T& a, T b) { if (b < a) { a = b; } } template <class T> inline void chmax(T& a, T b) { if (a < b) { a = b; } } template <class T> inline constexpr T square(T v) { return v * v; } using TimePoint = chrono::steady_clock::time_point; struct Timer { private: TimePoint startTime_; TimePoint endTime_; public: inline void Init() { startTime_ = chrono::steady_clock::now(); } inline void Start(int limit) { endTime_ = startTime_ + chrono::milliseconds(limit); } inline void StartMs(int limit) { endTime_ = startTime_ + chrono::milliseconds(limit); } inline void StartUs(int limit) { endTime_ = startTime_ + chrono::microseconds(limit); } inline void Join() { } inline bool IsOver() const { return chrono::steady_clock::now() >= endTime_; } inline int ElapseTimeMs() const { return (int)chrono::duration_cast<chrono::milliseconds>(chrono::steady_clock::now() - startTime_).count(); } inline int ElapseTimeUs() const { return (int)chrono::duration_cast<chrono::microseconds>(chrono::steady_clock::now() - startTime_).count(); } inline int LeftToUS(const TimePoint& limit) const { return (int)chrono::duration_cast<chrono::microseconds>(limit - chrono::steady_clock::now()).count(); } inline double NowRate() const { return (chrono::steady_clock::now() - startTime_).count() / (double)(endTime_ - startTime_).count(); } inline TimePoint Now() const { return chrono::steady_clock::now(); } inline TimePoint EndTime() const { return endTime_; } TimePoint GetLimitTimePointUs(int limit) const { return startTime_ + chrono::microseconds(limit); } }; Timer timer; template <class T> void InstanceRun(int argc, const char* argv[]) { timer.Init(); T* m = new T; m->Run(argc, argv); quick_exit(0); } struct Main; signed main(int argc, const char* argv[]) { cin.tie(0); ios::sync_with_stdio(0); InstanceRun<Main>(argc, argv); } struct ValidateException { stringstream ss; ValidateException(const char* function, int line, const char* msg) { ss << "**** ABORT **** : " << function << " " << line << " " << msg; } }; struct MemoryException {}; #define VALIDATE_ABORT() #define VALIDATE_ASSERT(exp) #define VABORT() VALIDATE_ABORT() #define VASSERT(exp) VALIDATE_ASSERT(exp) #include <cstdint> using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using s8 = int8_t; using s16 = int16_t; using s32 = int32_t; using s64 = int64_t; template <class A, class B> struct pr { union { A a; A key; A first; A x; }; union { B b; B value; B second; B y; }; bool operator == (pr const& r) const { return a == r.a && b == r.b; } bool operator != (pr const& r) const { return !((*this) == r); } bool operator < (pr const& r) const { if (a == r.a) { return b < r.b; } return a < r.a; } pr& operator += (pr const& v) { a += v.a; b += v.b; return *this; } pr& operator -= (pr const& v) { a -= v.a; b -= v.b; return *this; } template <class C, class D> auto operator + (pr<C, D> const& v) const { return pr<decltype(a + v.a), decltype(b + v.b)>{ a + v.a, b + v.b }; } template <class C, class D> auto operator - (pr<C, D> const& v) const { return pr<decltype(a - v.a), decltype(b - v.b)>{ a - v.a, b - v.b }; } template <class C, class D> explicit operator pr<C, D>() const { return { C(a), D(b) }; } template <class T> auto operator * (T const& v) const -> pr<decltype(x * v), decltype(y * v)> { return { x * v, y * v }; } template <class T> auto operator / (T const& v) const -> pr<decltype(x / v), decltype(y / v)> { return { x / v, y / v }; } template <class T> pr& operator *= (T const& v) { x *= v; y *= v; return *this; } template <class T> pr& operator /= (T const& v) { x /= v; y /= v; return *this; } pr operator -() const { return pr{ -x, -y }; } void flip() { swap(x, y); } friend istream& operator>>(istream& is, pr& p) { is >> p.a >> p.b; return is; } friend ostream& operator<<(ostream& os, pr const& p) { os << p.a << " " << p.b; return os; } template <size_t I> auto get() const { if constexpr (I == 0) { return x; } else if constexpr (I == 1) { return y; } } }; using pint = pr<int, int>; using pdouble = pr<double, double>; static_assert(is_pod<pint>::value, "not pod"); template <class A, class B> struct tuple_size<pr<A, B>> : integral_constant<size_t, 2> {}; template <class A, class B> struct tuple_element<0, pr<A, B>> { using type = A; }; template <class A, class B> struct tuple_element<1, pr<A, B>> { using type = B; }; template <class A, class B, class C> struct tr { union { A a; A first; A x; }; union { B b; B second; B y; }; union { C c; C third; C z; }; bool operator == (tr const& r) const { return a == r.a && b == r.b && c == r.c; } bool operator != (tr const& r) const { return !((*this) == r); } bool operator < (tr const& r) const { if (a == r.a) { if (b == r.b) { return c < r.c; } return b < r.b; } return a < r.a; } tr operator + (tr v) const { return tr(x, y, z) += v; } tr operator - (tr v) const { return tr(x, y, z) -= v; } tr operator - () const { return tr{ -x, -y, -z }; } tr& operator += (tr v) { x += v.x; y += v.y; z += v.z; return *this; } tr& operator -= (tr v) { x -= v.x; y -= v.y; z -= v.z; return *this; } friend istream& operator>>(istream& is, tr& p) { is >> p.a >> p.b >> p.c; return is; } friend ostream& operator<<(ostream& os, tr const& p) { os << p.a << " " << p.b << " " << p.c; return os; } }; using tint = tr<int, int, int>; static_assert(is_pod<tint>::value, "not pod"); template <class T> struct arr : public vector<T> { static arr<arr<T>> D2(int y, int x, T value) { return arr<arr<T>>(y, arr<T>(x, value)); } static arr<arr<arr<T>>> D3(int z, int y, int x, T value) { return arr<arr<arr<T>>>(z, arr<arr<T>>(y, arr<T>(x, value))); } static arr<arr<arr<arr<T>>>> D4(int w, int z, int y, int x, T value) { return arr<arr<arr<arr<T>>>>(w, arr<arr<arr<T>>>(z, arr<arr<T>>(y, arr<T>(x, value)))); } static arr<T> Iota(int N, int value = 0) { auto r = arr<T>(N); r.iota(value); return r; } arr() {} arr(initializer_list<T> il) : vector<T>(il) {} explicit arr(int n) : vector<T>(n) {} arr(int n, T v) : vector<T>(n, v) {} arr(const arr& r) : vector<T>(r) {} arr(arr&& r) : vector<T>(move(r)) {} arr& operator = (const arr& r) { vector<T>::operator = (r); return *this; } arr& operator = (arr&& r) { vector<T>::operator = (move(r)); return *this; } T& operator()(int i) { return (*this)[i]; } T const& operator()(int i) const { return (*this)[i]; } void init(int n, T v = T()) { this->assign(n, v); } int sz() const { return (int)this->size(); } void pb(T v) { this->push_back(v); } void sort() { std::sort(this->begin(), this->end()); } template <class F> void sort(F&& f) { std::sort(this->begin(), this->end(), f); } void rsort() { std::sort(this->begin(), this->end(), greater<T>()); } void reverse() { std::reverse(this->begin(), this->end()); } void unique_erase() { this->erase(std::unique(this->begin(), this->end()), this->end()); } bool next_permutation() { return std::next_permutation(this->begin(), this->end()); } int lower_bound(T const& v, function<bool(T, T)> p) { return std::lower_bound(this->begin(), this->end(), v, p) - this->begin(); } int lower_bound(T const& v) { return std::lower_bound(this->begin(), this->end(), v) - this->begin(); } int upper_bound(T const& v, function<bool(T, T)> p) { return std::upper_bound(this->begin(), this->end(), v, p) - this->begin(); } int upper_bound(T const& v) { return std::upper_bound(this->begin(), this->end(), v) - this->begin(); } void iota(T startValue = 0) { ::iota(this->begin(), this->end(), startValue); } void fill(T v) { ::fill(this->begin(), this->end(), v); } int find_sorted_nearest(T const& v) { int i = this->lower_bound(v); if (i >= sz()) { --i; } else if ((*this)[i] != v) { int p = i - 1; if (p >= 0) { int id = abs((*this)[i] - v); int pd = abs((*this)[p] - v); if (pd < id) { i = p; } } } return i; } int find_sorted(T const& v) { int i = this->lower_bound(v); if (i >= sz()) { return -1; } if ((*this)[i] != v) { return -1; } return i; } int find(T const& v) const { auto it = std::find(this->begin(), this->end(), v); if (it == this->end()) { return -1; } return (int)(it - this->begin()); } bool is_contains(T const& v) const { auto it = std::find(this->begin(), this->end(), v); if (it == this->end()) { return false; } return true; } template <class P> void remove_if_erase(P&& predicate) { this->erase(std::remove_if(this->begin(), this->end(), predicate), this->end()); } void slide_remove(int i) { (*this)[i] = (*this)[sz() - 1]; this->pop_back(); } void remove_idx(int i) { this->erase(this->begin() + i); } void insert_idx(int i, const T& v) { this->insert(this->begin() + i, v); } int findGE(const T& v) { return lower_bound(v); } int findG(const T& v) { return upper_bound(v); } int findLE(const T& v) { return upper_bound(v) - 1; } int findL(const T& v) { return lower_bound(v) - 1; } friend ostream& operator<<(ostream& os, const arr<T>& p) { if (p.empty()) { return os; } os << p[0]; FOR(i, 1, p.size()) { os << " " << p[i]; } return os; } }; using ints = arr<int>; template <class T, int CAPACITY> struct CapacityQueue { private: array<T, CAPACITY> ar = {}; int start = 0; int end = 0; public: inline void clear() { start = 0; end = 0; } inline void push(const T& v) { ar[end++] = v; } inline T* push() { T* ptr = &ar[end]; ++end; return ptr; } inline const T& get() const { return ar[start]; } inline T pop() { return ar[start++]; } inline bool empty() const { return start == end; } inline bool exist() const { return start != end; } inline int size() const { return end - start; } inline int total_push_count() const { return end; } const T& operator[](int i) const{ return ar[i]; } int end_size() const { return end; } }; template <class T, int CAPACITY> using CapQue = CapacityQueue<T, CAPACITY>; template <class T, int CAPACITY> class CapacityArray { static_assert(is_trivially_copyable<T>::value); private: array<T, CAPACITY> array_ = {}; int count_ = 0; public: CapacityArray() { } explicit CapacityArray(int count) { resize(count); } inline void clear() { count_ = 0; } inline void Clear() { clear(); } inline void resize(int count) { count_ = count; } inline void Resize(int count) { resize(count); } inline void assign(int count, const T& e) { count_ = count; for (int i = 0; i < count; ++i) { array_[i] = e; } } inline T* PushBack() { return &array_[count_++]; } inline void push_back(const T& e) { array_[count_++] = e; } inline void PushBack(const T& e) { push_back(e); } inline void pop_back() { --count_; } inline void PopBack() { pop_back(); } inline void RemoveSlide(int i) { array_[i] = array_[count_ - 1]; --count_; } inline int GetCount() const { return count_; } inline int size() const { return count_; } inline int sz() const { return count_; } inline bool empty() const { return count_ == 0; } inline T& operator[](int index) { return array_[index]; } inline const T& operator[](int index) const { return array_[index]; } inline auto begin() -> decltype(array_.begin()) { return array_.begin(); } inline auto end() -> decltype(array_.begin()) { return array_.begin() + count_; } inline auto begin() const -> decltype(array_.begin()) { return array_.begin(); } inline auto end() const -> decltype(array_.begin()) { return array_.begin() + count_; } inline bool IsContain(const T& value) const { for (const auto& v : *this) { if (v == value) { return true; } } return false; } inline void MemInsert(int index, const T* mem, int count) { if (index == count_) { memcpy(array_.data() + index, mem, sizeof(T) * count); count_ += count; } else { memmove(array_.data() + index + count, array_.data() + index, sizeof(T) * (count_ - index)); memcpy(array_.data() + index, mem, sizeof(T) * count); count_ += count; } } void insert(int index, const T& value) { MemInsert(index, &value, 1); } }; template <class T, int CAPACITY> using CapArr = CapacityArray<T, CAPACITY>; template <int CAPACITY> struct CapacitySet { private: CapacityArray<int, CAPACITY> elemens; array<int, CAPACITY> indexTable; public: CapacitySet() { fill(indexTable.begin(), indexTable.end(), -1); } void Clear() { elemens.Clear(); fill(indexTable.begin(), indexTable.end(), -1); } inline void Add(int ai) { indexTable[ai] = elemens.GetCount(); elemens.PushBack(ai); } inline void ForceAdd(int ai) { if (indexTable[ai] >= 0) { return; } indexTable[ai] = elemens.GetCount(); elemens.PushBack(ai); } inline void Remove(int ai) { int removeIndex = indexTable[ai]; int lastIndex = elemens.GetCount() - 1; if (removeIndex != lastIndex) { elemens[removeIndex] = elemens[lastIndex]; indexTable[elemens[lastIndex]] = removeIndex; } elemens.PopBack(); indexTable[ai] = -1; } inline void ForceRemove(int ai) { if (indexTable[ai] < 0) { return; } int removeIndex = indexTable[ai]; int lastIndex = elemens.GetCount() - 1; if (removeIndex != lastIndex) { elemens[removeIndex] = elemens[lastIndex]; indexTable[elemens[lastIndex]] = removeIndex; } elemens.PopBack(); indexTable[ai] = -1; } inline bool IsContain(int ai) const { return indexTable[ai] >= 0; } inline int GetCount() const { return elemens.GetCount(); } inline int size() const { return elemens.GetCount(); } inline int At(int index) const { return elemens[index]; } inline int operator[](int index) const { return elemens[index]; } inline auto begin() -> decltype(elemens.begin()) { return elemens.begin(); } inline auto end() -> decltype(elemens.begin()) { return elemens.end(); } inline auto begin() const -> decltype(elemens.begin()) { return elemens.begin(); } inline auto end() const -> decltype(elemens.begin()) { return elemens.end(); } }; struct SizeSet { private: vector<int> elemens; vector<int> indexTable; public: void InitSize(int size) { elemens.clear(); elemens.reserve(size); indexTable.assign(size, -1); } void Clear() { elemens.clear(); indexTable.assign(indexTable.size(), -1); } inline void Add(int ai) { indexTable[ai] = (int)elemens.size(); elemens.emplace_back(ai); } inline void ForceAdd(int ai) { if (indexTable[ai] >= 0) { return; } indexTable[ai] = (int)elemens.size(); elemens.emplace_back(ai); } inline void Remove(int ai) { int removeIndex = indexTable[ai]; int lastIndex = (int)elemens.size() - 1; if (removeIndex != lastIndex) { elemens[removeIndex] = elemens[lastIndex]; indexTable[elemens[lastIndex]] = removeIndex; } elemens.pop_back(); indexTable[ai] = -1; } inline void ForceRemove(int ai) { if (indexTable[ai] < 0) { return; } int removeIndex = indexTable[ai]; int lastIndex = (int)elemens.size() - 1; if (removeIndex != lastIndex) { elemens[removeIndex] = elemens[lastIndex]; indexTable[elemens[lastIndex]] = removeIndex; } elemens.pop_back(); indexTable[ai] = -1; } inline bool IsContain(int ai) const { return indexTable[ai] >= 0; } inline int GetCount() const { return (int)elemens.size(); } inline int At(int index) const { return elemens[index]; } inline int operator[](int index) const { return elemens[index]; } inline auto begin() -> decltype(elemens.begin()) { return elemens.begin(); } inline auto end() -> decltype(elemens.begin()) { return elemens.end(); } inline auto begin() const -> decltype(elemens.begin()) { return elemens.begin(); } inline auto end() const -> decltype(elemens.begin()) { return elemens.end(); } }; template<class T, class COMPARERE> struct PriorityQueue : public priority_queue<T, vector<T>, COMPARERE> { template <class D> void Cut(int size, D&& deleter) { if ((int)this->c.size() > size) { int orgSize = (int)this->c.size(); for (int i = size; i < orgSize; ++i) { deleter(this->c[i]); } this->c.resize(size); } } vector<T>& Container() { return this->c; } void Cut(int size) { if ((int)this->c.size() > size) { this->c.resize(size); } } void Clear() { this->c.clear(); } }; template <int S> struct CheckMapS { private: array<u32, S> checked_ = {}; u32 mark_ = 1; public: void Clear() { ++mark_; if (mark_ == 0) { checked_ = {}; ++mark_; } } bool IsChecked(int i) const { return checked_[i] == mark_; } void Check(int i) { checked_[i] = mark_; } void Reset(int i) { checked_[i] = mark_ - 1; } bool operator[](int i) const { return checked_[i] == mark_; } bool operator == (const CheckMapS<S>& r) const { REP(i, S) { if (this->IsChecked(i) != r.IsChecked(i)) { return false; } } return true; } }; template <class T, int S> struct CheckMapDataS { private: array<T, S> data_; array<u32, S> checked_ = {}; u32 mark_ = 1; public: void Clear() { ++mark_; if (mark_ == 0) { checked_ = {}; ++mark_; } } bool IsChecked(int i) const { return checked_[i] == mark_; } void Check(int i) { checked_[i] = mark_; } void Set(int i, const T& value) { checked_[i] = mark_; data_[i] = value; } void Reset(int i) { checked_[i] = mark_ - 1; } const T& Get(int i) const { VASSERT(checked_[i] == mark_); return data_[i]; } T& Ref(int i) { VASSERT(checked_[i] == mark_); return data_[i]; } const T& Ref(int i) const { VASSERT(checked_[i] == mark_); return data_[i]; } const T& operator[](int i) const { VASSERT(checked_[i] == mark_); return data_[i]; } T GetIf(int i, const T& defaultValue) const { if (checked_[i] == mark_) { return data_[i]; } return defaultValue; } }; struct CheckMapD { private: vector<u32> checked_; u32 mark_ = 1; public: void SetSize(int size) { checked_.resize(size, mark_); } void Clear() { ++mark_; if (mark_ == 0) { checked_.assign(checked_.size(), 0); ++mark_; } } bool IsChecked(int i) const { return checked_[i] == mark_; } void Check(int i) { checked_[i] = mark_; } void Reset(int i) { checked_[i] = mark_ - 1; } }; template <class T> struct CheckMapDataD { private: vector<T> data_; vector<u32> checked_; u32 mark_ = 1; public: void SetSize(int size) { checked_.resize(size, mark_); data_.resize(size); } void Clear() { ++mark_; if (mark_ == 0) { checked_.assign(checked_.size(), 0); ++mark_; } } bool IsChecked(int i) const { return checked_[i] == mark_; } void Check(int i) { checked_[i] = mark_; } void Set(int i, const T& value) { checked_[i] = mark_; data_[i] = value; } void Reset(int i) { checked_[i] = mark_ - 1; } const T& Get(int i) const { VASSERT(checked_[i] == mark_); return data_[i]; } T& Ref(int i) { VASSERT(checked_[i] == mark_); return data_[i]; } }; enum class Dir : int8_t { L = 0, U, R, D, N, Invalid, }; constexpr array<Dir, 4> Dir4 = { Dir::L, Dir::U, Dir::R, Dir::D, }; constexpr array<pint, 4> Around4 = { pint{-1, 0}, pint{0, -1}, pint{1, 0}, pint{0, 1} }; inline Dir RotateRight(Dir d) { return Dir(((int)d + 1) % 4); } inline Dir RotateLeft(Dir d) { return Dir(((int)d + 3) % 4); } inline Dir Back(Dir d) { return Dir(s8(d) ^ 2); } bool IsHorizontal(Dir dir) { return dir == Dir::L || dir == Dir::R; } bool IsVertical(Dir dir) { return dir == Dir::U || dir == Dir::D; } inline Dir CalcDir(const pint& from, const pint& to) { if (from.x > to.x) { return Dir::L; } else if (from.y > to.y) { return Dir::U; } else if (from.x < to.x) { return Dir::R; } else if (from.y < to.y) { return Dir::D; } else { return Dir::N; } } inline const string& DirString(Dir dir) { static const string strs[6] = { "LEFT", "UP", "RIGHT", "DOWN", "WAIT", "INVALID", }; return strs[(int)dir]; } inline char DirToChar(Dir dir) { static const char chars[6] = { 'L', 'U', 'R', 'D', 'N', '*', }; return chars[(int)dir]; } inline const Dir CharToDir(char c) { if (c == 'L') { return Dir::L; } else if (c == 'U') { return Dir::U; } else if (c == 'R') { return Dir::R; } else if (c == 'D') { return Dir::D; } else if (c == 'N') { return Dir::N; } VABORT(); return Dir::Invalid; } template <class T, int CAP> struct CCA { T ar[CAP]; int s; inline constexpr void push(const T& v) { ar[s++] = v; } inline constexpr const T* begin() const { return &ar[0]; } inline constexpr const T* end() const { return &ar[s]; } inline constexpr const T& operator ()(int i) const { return ar[i]; } inline constexpr const T& operator [](int i) const { return ar[i]; } }; template <int W, int H, int AROUND_COUNT> struct AroundMapS { using CA = CCA<int, AROUND_COUNT>; CA table[W * H]; constexpr AroundMapS(const array<pint, AROUND_COUNT>& aroundDirs) : table{} { REP(cellId, W * H) { pint p = { cellId % W, cellId / W }; for (const pint& a : aroundDirs) { int x = p.a + a.a; int y = p.b + a.b; if (x >= 0 && x < W && y >= 0 && y < H) { table[cellId].push(x + y * W); } } } } inline constexpr const CA& operator ()(int id) const { return table[id]; } inline constexpr const CA& operator [](int id) const { return table[id]; } }; template <int AROUND_COUNT> struct AroundMapD { using CA = CCA<int, AROUND_COUNT>; vector<CA> table_; int width_ = 1; void Init(int width, int height, const pint (&aroundDirs)[AROUND_COUNT]) { width_ = width; int count = width * height; table_.resize(count); REP(i, count) { pint p = { i % width, i / width }; for (const pint& a : aroundDirs) { pint n = p + a; if (n.a >= 0 && n.a < width && n.b >= 0 && n.b < height) { table_[i].push(n.a + n.b * width); } } } } inline const CA& operator[](int i) const { return table_[i]; } inline const CA& operator[](const pint& p) const { return table_[p.x + p.y * width_]; } }; template <int W, int H, int AROUND_COUNT> struct DirMapS { using CA = CCA<int, AROUND_COUNT>; CA table[W * H]; constexpr DirMapS(const array<pint, AROUND_COUNT>& aroundDirs) : table{} { REP(cellId, W * H) { pint p = { cellId % W, cellId / W }; for (const pint& a : aroundDirs) { int x = p.a + a.a; int y = p.b + a.b; int n = -1; if (x >= 0 && x < W && y >= 0 && y < H) { n = x + y * W; } table[cellId].push(n); } } } inline constexpr const CA& operator ()(int id) const { return table[id]; } inline constexpr const CA& operator [](int id) const { return table[id]; } }; #include <cstdint> struct XorShift { uint32_t x; uint32_t y; uint32_t z; uint32_t w; inline XorShift(uint32_t seed = 0) { x = 123456789; y = 362436069; z = 521288629; w = 88675123 + seed; } inline uint32_t operator()() { uint32_t t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } inline uint32_t operator()(uint32_t l, uint32_t r) { return ((*this)() % (r - l)) + l; } inline uint32_t operator()(uint32_t r) { return (*this)() % r; } }; struct Xor64 { using result_type = uint64_t; static constexpr result_type min() { return 0; } static constexpr result_type max() { return UINT64_MAX; } uint64_t x; inline Xor64(uint64_t seed = 0) { x = 88172645463325252ULL + seed; } inline uint64_t operator()() { x = x ^ (x << 7); return x = x ^ (x >> 9); } inline uint64_t operator()(uint64_t l, uint64_t r) { return ((*this)() % (r - l)) + l; } inline uint64_t operator()(uint64_t r) { return (*this)() % r; } inline double GetDouble() { return (*this)() / (double)UINT64_MAX; } }; struct Xor32 { using result_type = uint32_t; static constexpr result_type min() { return 0; } static constexpr result_type max() { return UINT32_MAX; } uint32_t x; inline Xor32(uint32_t seed = 0) { x = 2463534242 + seed; } inline uint32_t operator ()(void) { x = x ^ (x << 13); x = x ^ (x >> 17); return x = x ^ (x << 5); } inline uint32_t operator()(uint32_t l, uint32_t r) { return ((*this)() % (r - l)) + l; } inline uint32_t operator()(uint32_t r) { return (*this)() % r; } }; struct Random { static inline Xor32& Instnce() { static Xor32 x; return x; } static inline uint32_t Get() { return Instnce()(); } static inline uint32_t Get(uint32_t l, uint32_t r) { return Instnce()(l, r); } static inline uint32_t Get(uint32_t r) { return Instnce()(r); } static inline void Get2(uint32_t N, uint32_t& a, uint32_t& b) { VASSERT(N >= 2); a = Get(N); b = Get(N - 1); if (b >= a) { ++b; } } static inline double GetDouble() { return Get() / (double)UINT32_MAX; } static inline double GetDouble(double l, double r) { return l + GetDouble() * (r - l); } }; #define REGIST_PARAM(name, type, defaultValue) type name = defaultValue; constexpr struct { } HYPER_PARAM; auto& HP = HYPER_PARAM; double ParamValue(double x, double a, double e) { return a * pow(x, e); } constexpr int W = 20; constexpr int H = 20; constexpr int WH = W * H; constexpr int L_MAX = 400; constexpr int T_MAX = 1000; AroundMapS<W, H, 4> AroundMap(Around4); DirMapS<W, H, 4> DirMap(Around4); template <int W, int H> struct GridSystemS { inline constexpr int ToId(int x, int y) const { return x + W * y; } inline constexpr int ToId(const pint& p) const { return p.x + W * p.y; } inline constexpr pint ToPos(int id) const { return pint{ id % W, id / W }; } inline int CalcL1Dist(const pint& a, const pint& b) const { return abs(a.x - b.x) + abs(a.y - b.y); } inline int CalcL1Dist(int a, int b) const { return CalcL1Dist(ToPos(a), ToPos(b)); } inline int CalcL2Dist2(const pint& a, const pint& b) const { return square(a.x - b.x) + square(a.y - b.y); } inline int CalcL2Dist2(int a, int b) const { return CalcL2Dist2(ToPos(a), ToPos(b)); } inline double CalcL2Dist(const pint& a, const pint& b) const { return sqrt(CalcL2Dist2(a, b)); } inline double CalcL2Dist(int a, int b) const { return CalcL2Dist(ToPos(a), ToPos(b)); } inline bool IsOut(int x, int y) const { if (x < 0 || x >= W || y < 0 || y >= H) { return true; } return false; } inline bool IsOut(const pint& p) const { return IsOut(p.x, p.y); } inline bool IsIn(const pint& p) const { return !IsOut(p); } inline int RotateRight90(int id) const { pint p = ToPos(id); return ToId(W - 1 - p.y, p.x); } }; template <class T> using Grid = array<T, WH>; GridSystemS<W, H> gs; struct Action { CapArr<Dir, T_MAX> dirs; }; struct Wall { int moveCount = 0; int wallCount = 0; double noWallRate = 1.0; void CanMoved() { moveCount++; } void NotMoved(double failProb) { moveCount++; wallCount++; noWallRate *= failProb; } double CanMoveRate(double failProb) const { if (moveCount > wallCount) { return 1; } return noWallRate; } double WallRate(double failProb) const { if (moveCount > wallCount) { return 0; } return 1.0 - noWallRate; } }; struct IOServer { array<array<Wall, W - 1>, H> wallsH = {}; array<array<Wall, H - 1>, W> wallsV = {}; double failProb = 0; Wall& GetWall(const pint& p, Dir dir) { pint nextP = p + Around4[(int)dir]; if (nextP.x < 0 || nextP.x >= W || nextP.y < 0 || nextP.y >= H) { VABORT(); } if (dir == Dir::L || dir == Dir::R) { int left = min(p.x, nextP.x); return wallsH[p.y][left]; } else { int top = min(p.y, nextP.y); return wallsV[p.x][top]; } } const Wall& GetWall(const pint& p, Dir dir) const { return ((IOServer&)(*this)).GetWall(p, dir); } bool CanMove(const pint& p, Dir dir, double& canMoveRate) const { pint nextP = p + Around4[(int)dir]; if (nextP.x < 0 || nextP.x >= W || nextP.y < 0 || nextP.y >= H) { return false; } auto& wall = GetWall(p, dir); canMoveRate = wall.CanMoveRate(failProb); return true; } void SetResult(const pint& p, Dir dir, bool successMove) { pint nextP = p + Around4[(int)dir]; if (nextP.x < 0 || nextP.x >= W || nextP.y < 0 || nextP.y >= H) { VABORT(); } auto& wall = GetWall(p, dir); if (successMove) { wall.CanMoved(); } else { wall.NotMoved(failProb); } } void Input(int argc, const char* argv[]) { auto& is = cin; int dummy = 0; is >> dummy >> dummy; int ip = 0; is >> ip; failProb = ip / 100.0; } void Output(const CapArr<Dir, T_MAX>& dirs) { { static string str; str.clear(); REP(i, dirs.size()) { auto dir = dirs[i]; str += DirToChar(dir); } auto& os = cout; auto& is = cin; os << str << endl; int ret = 0; is >> ret; if (ret < 0) { exit(0); return; } pint p = {}; REP(i, ret) { Dir dir = dirs[i]; SetResult(p, dir, true); p += Around4[(int)dir]; } if (ret < dirs.size()) { Dir dir = dirs[ret]; SetResult(p, dir, false); } } } }; IOServer server; const double D_MAX = sqrt(square(W - 1) + square(H - 1)); struct Solver { struct Node { pint p = {}; CapArr<Dir, T_MAX> dirs = {}; double cost = 0; Node() {}; Node(const pint& p_, const CapArr<Dir, T_MAX>& dirs_, double cost_) { p = p_; dirs = dirs_; cost = cost_; } }; struct Comparer { bool operator()(const Node& a, const Node& b) { return a.cost > b.cost; } }; void Run() { PriorityQueue<Node, Comparer> que; array<array<double, W>, H> costMap; CapArr<Dir, T_MAX> bestDirs; double bestCost = 999999999; REP(t, T_MAX + 2) { que.Clear(); REP(y, H) { REP(x, W) { costMap[y][x] = 999999999; } } bestDirs.clear(); { Node node = Node(pint{}, {}, 0); que.push(node); costMap[0][0] = 0; } while (!que.empty()) { Node node = que.top(); que.pop(); const pint p = node.p; if (node.cost > costMap[p.y][p.x]) { continue; } REP(di, 4) { pint np = node.p + Around4[di]; Dir dir = Dir4[di]; double canMoveRate = 0; if (server.CanMove(node.p, dir, canMoveRate)) { CapArr<Dir, T_MAX> newDirs = node.dirs; newDirs.push_back(dir); double newCost = node.cost + 1; const auto& wall = server.GetWall(p, dir); if (wall.moveCount == 0) { newCost -= 0.001; } else if (wall.moveCount > wall.wallCount) { if (p.x == 0 && p.y == 0) { } else { newCost -= 0.1; } } else { if (wall.wallCount) { newCost += square((double)wall.wallCount) / 20.0; } } double dist = sqrt(square(np.x - (W - 1)) + square(np.y - (H - 1))); newCost += dist * 0.000001; newCost += Random::GetDouble() * 0.00000001; Node newNode = Node(np, newDirs, newCost); if (newNode.cost < costMap[np.y][np.x]) { if (np.y == H - 1 && np.x == W - 1) { if (bestDirs.empty() || newNode.cost < bestCost) { bestCost = newNode.cost; bestDirs = newNode.dirs; } } else { if (newNode.dirs.size() < L_MAX) { que.push(newNode); costMap[np.y][np.x] = newNode.cost; } } } } } } server.Output(bestDirs); } } }; struct Main { void Run(int argc, const char* argv[]) { try { timer.StartMs(TIME_LIMIT); server.Input(argc, argv); Solver* solver = new Solver; solver->Run(); } catch (ValidateException& e) { (void)e; } cerr << "time " << timer.ElapseTimeMs() << endl; } };