結果
問題 | No.106 素数が嫌い!2 |
ユーザー | McGregorsh |
提出日時 | 2022-06-15 17:14:14 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 315 ms / 5,000 ms |
コード長 | 3,564 bytes |
コンパイル時間 | 293 ms |
コンパイル使用メモリ | 82,048 KB |
実行使用メモリ | 130,560 KB |
最終ジャッジ日時 | 2024-10-04 10:11:27 |
合計ジャッジ時間 | 4,689 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 203 ms
108,740 KB |
testcase_01 | AC | 137 ms
88,960 KB |
testcase_02 | AC | 151 ms
88,668 KB |
testcase_03 | AC | 152 ms
88,960 KB |
testcase_04 | AC | 221 ms
108,928 KB |
testcase_05 | AC | 298 ms
130,560 KB |
testcase_06 | AC | 296 ms
130,384 KB |
testcase_07 | AC | 298 ms
130,300 KB |
testcase_08 | AC | 169 ms
91,760 KB |
testcase_09 | AC | 165 ms
91,776 KB |
testcase_10 | AC | 300 ms
130,304 KB |
testcase_11 | AC | 215 ms
106,368 KB |
testcase_12 | AC | 315 ms
127,916 KB |
testcase_13 | AC | 140 ms
88,960 KB |
testcase_14 | AC | 140 ms
88,604 KB |
testcase_15 | AC | 141 ms
89,088 KB |
ソースコード
###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr import sys, re from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 def main(): n, k = i_map() juge = sieve_of_eratosthenes(n+100) nums = [] for i in range(n+1): if juge[i]: nums.append(i) count = [0] * (n+1) for i in range(len(nums)): for j in range(nums[i], n+1, nums[i]): count[j] += 1 ans = 0 for i in range(n+1): if count[i] >= k: ans += 1 print(ans) if __name__ == '__main__': main()