結果

問題 No.106 素数が嫌い!2
ユーザー McGregorshMcGregorsh
提出日時 2022-06-15 17:14:14
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 315 ms / 5,000 ms
コード長 3,564 bytes
コンパイル時間 293 ms
コンパイル使用メモリ 82,048 KB
実行使用メモリ 130,560 KB
最終ジャッジ日時 2024-10-04 10:11:27
合計ジャッジ時間 4,689 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 203 ms
108,740 KB
testcase_01 AC 137 ms
88,960 KB
testcase_02 AC 151 ms
88,668 KB
testcase_03 AC 152 ms
88,960 KB
testcase_04 AC 221 ms
108,928 KB
testcase_05 AC 298 ms
130,560 KB
testcase_06 AC 296 ms
130,384 KB
testcase_07 AC 298 ms
130,300 KB
testcase_08 AC 169 ms
91,760 KB
testcase_09 AC 165 ms
91,776 KB
testcase_10 AC 300 ms
130,304 KB
testcase_11 AC 215 ms
106,368 KB
testcase_12 AC 315 ms
127,916 KB
testcase_13 AC 140 ms
88,960 KB
testcase_14 AC 140 ms
88,604 KB
testcase_15 AC 141 ms
89,088 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


def main():
   
   n, k = i_map()
   juge = sieve_of_eratosthenes(n+100)
   nums = []
   for i in range(n+1):
   	  if juge[i]:
   	  	  nums.append(i)
   
   count = [0] * (n+1)
   for i in range(len(nums)):
   	  for j in range(nums[i], n+1, nums[i]):
   	  	  count[j] += 1
   
   
   ans = 0
   for i in range(n+1):
   	  if count[i] >= k:
   	  	  ans += 1
   print(ans)
   
   
if __name__ == '__main__':
    main()

0