結果
問題 | No.1983 [Cherry 4th Tune C] 南の島のマーメイド |
ユーザー | hitonanode |
提出日時 | 2022-06-17 21:45:05 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 228 ms / 4,000 ms |
コード長 | 11,377 bytes |
コンパイル時間 | 2,296 ms |
コンパイル使用メモリ | 186,004 KB |
実行使用メモリ | 40,460 KB |
最終ジャッジ日時 | 2024-10-09 07:24:20 |
合計ジャッジ時間 | 9,549 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 5 ms
5,248 KB |
testcase_09 | AC | 7 ms
5,248 KB |
testcase_10 | AC | 10 ms
5,248 KB |
testcase_11 | AC | 11 ms
5,248 KB |
testcase_12 | AC | 6 ms
5,248 KB |
testcase_13 | AC | 90 ms
15,176 KB |
testcase_14 | AC | 127 ms
19,176 KB |
testcase_15 | AC | 126 ms
19,112 KB |
testcase_16 | AC | 49 ms
13,292 KB |
testcase_17 | AC | 134 ms
21,560 KB |
testcase_18 | AC | 110 ms
19,044 KB |
testcase_19 | AC | 172 ms
26,036 KB |
testcase_20 | AC | 109 ms
18,116 KB |
testcase_21 | AC | 144 ms
20,892 KB |
testcase_22 | AC | 179 ms
27,024 KB |
testcase_23 | AC | 211 ms
29,680 KB |
testcase_24 | AC | 228 ms
29,652 KB |
testcase_25 | AC | 224 ms
29,676 KB |
testcase_26 | AC | 222 ms
29,672 KB |
testcase_27 | AC | 222 ms
29,668 KB |
testcase_28 | AC | 223 ms
29,636 KB |
testcase_29 | AC | 218 ms
29,668 KB |
testcase_30 | AC | 217 ms
29,548 KB |
testcase_31 | AC | 213 ms
29,672 KB |
testcase_32 | AC | 218 ms
29,672 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 57 ms
12,772 KB |
testcase_35 | AC | 136 ms
40,460 KB |
testcase_36 | AC | 120 ms
24,332 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 34 ms
5,248 KB |
testcase_39 | AC | 138 ms
40,456 KB |
testcase_40 | AC | 120 ms
25,356 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr) #else #define dbg(x) 0 #define dbgif(cond, x) 0 #endif #include <algorithm> #include <cassert> #include <queue> #include <utility> #include <vector> struct lowlink { int V; // # of vertices int E; // # of edges int k; std::vector<std::vector<std::pair<int, int>>> to; std::vector<std::pair<int, int>> edges; std::vector<int> root_ids; // DFS forestの構築で根になった頂点 std::vector<int> is_bridge; // Whether edge i is bridge or not, size = E std::vector<int> is_articulation; // whether vertex i is articulation point or not, size = V // lowlink std::vector<int> order; // visiting order of DFS tree, size = V std::vector<int> lowlink_; // size = V std::vector<int> is_dfstree_edge; // size = E int tecc_num; // 二重辺連結成分数 std::vector<int> tecc_id; // 各頂点が何個目の二重辺連結成分か int tvcc_num; // 二重頂点連結成分数 std::vector<int> tvcc_id; // 各辺が何個目の二重頂点連結成分か lowlink(int V) : V(V), E(0), k(0), to(V), is_articulation(V, 0), order(V, -1), lowlink_(V, -1), tecc_num(0), tvcc_num(0) {} void add_edge(int v1, int v2) { assert(v1 >= 0 and v1 < V); assert(v2 >= 0 and v2 < V); to[v1].emplace_back(v2, E); to[v2].emplace_back(v1, E); edges.emplace_back(v1, v2); is_bridge.push_back(0); is_dfstree_edge.push_back(0); tvcc_id.push_back(-1); E++; } std::vector<int> _edge_stack; int _root_now; // Build DFS tree // Complexity: O(V + E) void dfs_lowlink(int now, int prv_eid = -1) { if (prv_eid < 0) _root_now = k; if (prv_eid == -1) root_ids.push_back(now); order[now] = lowlink_[now] = k++; for (const auto &nxt : to[now]) { if (nxt.second == prv_eid) continue; if (order[nxt.first] < order[now]) _edge_stack.push_back(nxt.second); if (order[nxt.first] >= 0) { lowlink_[now] = std::min(lowlink_[now], order[nxt.first]); } else { is_dfstree_edge[nxt.second] = 1; dfs_lowlink(nxt.first, nxt.second); lowlink_[now] = std::min(lowlink_[now], lowlink_[nxt.first]); if ((order[now] == _root_now and order[nxt.first] != _root_now + 1) or (order[now] != _root_now and lowlink_[nxt.first] >= order[now])) { is_articulation[now] = 1; } if (lowlink_[nxt.first] >= order[now]) { while (true) { int e = _edge_stack.back(); tvcc_id[e] = tvcc_num; _edge_stack.pop_back(); if (e == nxt.second) break; } tvcc_num++; } } } } void build() { for (int v = 0; v < V; ++v) { if (order[v] < 0) dfs_lowlink(v); } // Find all bridges // Complexity: O(V + E) for (int i = 0; i < E; i++) { int v1 = edges[i].first, v2 = edges[i].second; if (order[v1] > order[v2]) std::swap(v1, v2); is_bridge[i] = order[v1] < lowlink_[v2]; } } // Find two-edge-connected components and classify all vertices // Complexity: O(V + E) std::vector<std::vector<int>> two_edge_connected_components() { build(); tecc_num = 0; tecc_id.assign(V, -1); std::vector<int> st; for (int i = 0; i < V; i++) { if (tecc_id[i] != -1) continue; tecc_id[i] = tecc_num; st.push_back(i); while (!st.empty()) { int now = st.back(); st.pop_back(); for (const auto &edge : to[now]) { int nxt = edge.first; if (tecc_id[nxt] >= 0 or is_bridge[edge.second]) continue; tecc_id[nxt] = tecc_num; st.push_back(nxt); } } ++tecc_num; } std::vector<std::vector<int>> ret(tecc_num); for (int i = 0; i < V; ++i) ret[tecc_id[i]].push_back(i); return ret; } // Find biconnected components and classify all edges // Complexity: O(V + E) std::vector<std::vector<int>> biconnected_components() { build(); std::vector<std::vector<int>> ret(tvcc_num); for (int i = 0; i < E; ++i) ret[tvcc_id[i]].push_back(i); return ret; } }; #include <algorithm> #include <numeric> #include <utility> #include <vector> // UnionFind Tree (0-indexed), based on size of each disjoint set struct UnionFind { std::vector<int> par, cou; UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); } int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return false; if (cou[x] < cou[y]) std::swap(x, y); par[y] = x, cou[x] += cou[y]; return true; } int count(int x) { return cou[find(x)]; } bool same(int x, int y) { return find(x) == find(y); } std::vector<std::vector<int>> groups() { std::vector<std::vector<int>> ret(par.size()); for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i); ret.erase(std::remove_if(ret.begin(), ret.end(), [&](const std::vector<int> &v) { return v.empty(); }), ret.end()); return ret; } }; int main() { int N, M, Q; cin >> N >> M >> Q; vector<pint> edges(M); lowlink graph(N); for (auto &[s, t] : edges) { cin >> s >> t; --s, --t; graph.add_edge(s, t); } graph.build(); UnionFind uf(N); REP(e, M) { if (graph.is_bridge.at(e)) { auto [s, t] = edges[e]; uf.unite(s, t); } } while (Q--) { int x, y; cin >> x >> y; --x, --y; cout << (uf.same(x, y) ? "Yes" : "No") << '\n'; } }