結果
| 問題 |
No.1982 [Cherry 4th Tune B] 絶険
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2022-06-17 21:47:18 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,296 ms / 3,000 ms |
| コード長 | 10,348 bytes |
| コンパイル時間 | 2,567 ms |
| コンパイル使用メモリ | 205,048 KB |
| 最終ジャッジ日時 | 2025-01-29 21:43:15 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 35 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename T>
struct LazySegmentTree {
using Monoid = typename T::Monoid;
using OperatorMonoid = typename T::OperatorMonoid;
explicit LazySegmentTree(const int n)
: LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {}
explicit LazySegmentTree(const std::vector<Monoid>& a)
: n(a.size()), height(0) {
while ((1 << height) < n) ++height;
p2 = 1 << height;
lazy.assign(p2, T::o_id());
data.assign(p2 << 1, T::m_id());
std::copy(a.begin(), a.end(), data.begin() + p2);
for (int i = p2 - 1; i > 0; --i) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
}
void set(int idx, const Monoid val) {
idx += p2;
for (int i = height; i > 0; --i) {
propagate(idx >> i);
}
data[idx] = val;
for (int i = 1; i <= height; ++i) {
const int current_idx = idx >> i;
data[current_idx] =
T::m_merge(data[current_idx << 1], data[(current_idx << 1) + 1]);
}
}
void apply(int idx, const OperatorMonoid val) {
idx += p2;
for (int i = height; i > 0; --i) {
propagate(idx >> i);
}
data[idx] = T::apply(data[idx], val);
for (int i = 1; i <= height; ++i) {
const int current_idx = idx >> i;
data[current_idx] =
T::m_merge(data[current_idx << 1], data[(current_idx << 1) + 1]);
}
}
void apply(int left, int right, const OperatorMonoid val) {
if (right <= left) return;
left += p2;
right += p2;
const int ctz_left = __builtin_ctz(left);
for (int i = height; i > ctz_left; --i) {
propagate(left >> i);
}
const int ctz_right = __builtin_ctz(right);
for (int i = height; i > ctz_right; --i) {
propagate(right >> i);
}
for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {
if (l & 1) apply_sub(l++, val);
if (r & 1) apply_sub(--r, val);
}
for (int i = left >> (ctz_left + 1); i > 0; i >>= 1) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
for (int i = right >> (ctz_right + 1); i > 0; i >>= 1) {
data[i] = T::m_merge(data[i << 1], data[(i << 1) + 1]);
}
}
Monoid get(int left, int right) {
if (right <= left) return T::m_id();
left += p2;
right += p2;
const int ctz_left = __builtin_ctz(left);
for (int i = height; i > ctz_left; --i) {
propagate(left >> i);
}
const int ctz_right = __builtin_ctz(right);
for (int i = height; i > ctz_right; --i) {
propagate(right >> i);
}
Monoid res_l = T::m_id(), res_r = T::m_id();
for (; left < right; left >>= 1, right >>= 1) {
if (left & 1) res_l = T::m_merge(res_l, data[left++]);
if (right & 1) res_r = T::m_merge(data[--right], res_r);
}
return T::m_merge(res_l, res_r);
}
Monoid operator[](const int idx) {
const int node = idx + p2;
for (int i = height; i > 0; --i) {
propagate(node >> i);
}
return data[node];
}
template <typename G>
int find_right(int left, const G g) {
if (left >= n) return n;
left += p2;
for (int i = height; i > 0; --i) {
propagate(left >> i);
}
Monoid val = T::m_id();
do {
while (!(left & 1)) left >>= 1;
Monoid nxt = T::m_merge(val, data[left]);
if (!g(nxt)) {
while (left < p2) {
propagate(left);
left <<= 1;
nxt = T::m_merge(val, data[left]);
if (g(nxt)) {
val = nxt;
++left;
}
}
return left - p2;
}
val = nxt;
++left;
} while (__builtin_popcount(left) > 1);
return n;
}
template <typename G>
int find_left(int right, const G g) {
if (right <= 0) return -1;
right += p2;
for (int i = height; i > 0; --i) {
propagate((right - 1) >> i);
}
Monoid val = T::m_id();
do {
--right;
while (right > 1 && (right & 1)) right >>= 1;
Monoid nxt = T::m_merge(data[right], val);
if (!g(nxt)) {
while (right < p2) {
propagate(right);
right = (right << 1) + 1;
nxt = T::m_merge(data[right], val);
if (g(nxt)) {
val = nxt;
--right;
}
}
return right - p2;
}
val = nxt;
} while (__builtin_popcount(right) > 1);
return -1;
}
private:
const int n;
int p2, height;
std::vector<Monoid> data;
std::vector<OperatorMonoid> lazy;
void apply_sub(const int idx, const OperatorMonoid& val) {
data[idx] = T::apply(data[idx], val);
if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val);
}
void propagate(const int idx) {
// assert(1 <= idx && idx < p2);
apply_sub(idx << 1, lazy[idx]);
apply_sub((idx << 1) + 1, lazy[idx]);
lazy[idx] = T::o_id();
}
};
namespace monoid {
template <typename T>
struct RangeMinimumAndUpdateQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); }
static constexpr OperatorMonoid o_id() {
return std::numeric_limits<OperatorMonoid>::max();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::min(a, b);
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return b == o_id() ? a : b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return b == o_id() ? a : b;
}
};
template <typename T>
struct RangeMaximumAndUpdateQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() {
return std::numeric_limits<Monoid>::lowest();
}
static constexpr OperatorMonoid o_id() {
return std::numeric_limits<OperatorMonoid>::lowest();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::max(a, b);
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return b == o_id() ? a : b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return b == o_id()? a : b;
}
};
template <typename T, T Inf>
struct RangeMinimumAndAddQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return Inf; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::min(a, b);
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return a + b;
}
};
template <typename T, T Inf>
struct RangeMaximumAndAddQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return -Inf; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return std::max(a, b);
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return a + b;
}
};
template <typename T>
struct RangeSumAndUpdateQuery {
using Monoid = struct { T sum; int len; };
using OperatorMonoid = T;
static std::vector<Monoid> init(const int n) {
return std::vector<Monoid>(n, Monoid{0, 1});
}
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr OperatorMonoid o_id() {
return std::numeric_limits<OperatorMonoid>::max();
}
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return Monoid{a.sum + b.sum, a.len + b.len};
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return b == o_id() ? a : b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return Monoid{b == o_id() ? a.sum : b * a.len, a.len};
}
};
template <typename T>
struct RangeSumAndAddQuery {
using Monoid = struct { T sum; int len; };
using OperatorMonoid = T;
static std::vector<Monoid> init(const int n) {
return std::vector<Monoid>(n, Monoid{0, 1});
}
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid& a, const Monoid& b) {
return Monoid{a.sum + b.sum, a.len + b.len};
}
static OperatorMonoid o_merge(const OperatorMonoid& a,
const OperatorMonoid& b) {
return a + b;
}
static Monoid apply(const Monoid& a, const OperatorMonoid& b) {
return Monoid{a.sum + b * a.len, a.len};
}
};
} // namespace monoid
int main() {
int n, k, q; cin >> n >> k >> q;
vector<int> l(k), r(k), c(k), h(k), I(q);
vector<ll> x(q);
REP(i, k) cin >> l[i] >> r[i] >> c[i] >> h[i], --l[i], --r[i];
REP(i, q) cin >> I[i] >> x[i], --I[i];
vector<int> lb(q, -1), ub(q, k);
while (true) {
bool must_update = false;
vector<vector<int>> mids(k);
REP(i, q) {
if (lb[i] + 1 < ub[i]) {
must_update = true;
mids[(lb[i] + ub[i]) / 2].emplace_back(i);
}
}
if (!must_update) break;
LazySegmentTree<monoid::RangeMaximumAndAddQuery<ll, LINF>> seg(vector<ll>(n, 0));
REP(i, k) {
seg.apply(l[i], r[i] + 1, h[i]);
for (int id : mids[i]) (seg[I[id]] >= x[id] ? ub : lb)[id] = i;
}
}
REP(i, q) cout << (ub[i] == k ? -1 : c[ub[i]]) << '\n';
return 0;
}
emthrm