結果

問題 No.1985 [Cherry 4th Tune] Early Summer Rain
ユーザー hitonanodehitonanode
提出日時 2022-06-17 22:32:08
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 34,752 bytes
コンパイル時間 4,014 ms
コンパイル使用メモリ 230,296 KB
実行使用メモリ 19,904 KB
最終ジャッジ日時 2024-10-09 08:46:22
合計ジャッジ時間 69,177 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 18 ms
5,248 KB
testcase_05 AC 3 ms
5,248 KB
testcase_06 AC 35 ms
5,248 KB
testcase_07 AC 35 ms
5,248 KB
testcase_08 AC 35 ms
5,248 KB
testcase_09 AC 17 ms
5,248 KB
testcase_10 AC 18 ms
5,248 KB
testcase_11 AC 35 ms
5,248 KB
testcase_12 AC 9 ms
5,248 KB
testcase_13 AC 10 ms
5,248 KB
testcase_14 AC 675 ms
5,420 KB
testcase_15 RE -
testcase_16 RE -
testcase_17 AC 1,486 ms
7,684 KB
testcase_18 AC 3,155 ms
11,360 KB
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 AC 1,480 ms
7,588 KB
testcase_23 AC 322 ms
5,248 KB
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 WA -
testcase_29 RE -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 RE -
testcase_34 RE -
testcase_35 WA -
testcase_36 RE -
testcase_37 RE -
testcase_38 WA -
testcase_39 AC 2 ms
5,248 KB
testcase_40 AC 1,562 ms
17,564 KB
testcase_41 RE -
testcase_42 WA -
testcase_43 RE -
testcase_44 WA -
testcase_45 RE -
testcase_46 AC 1,563 ms
17,564 KB
testcase_47 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) 0
#define dbgif(cond, x) 0
#endif

#include <iostream>
#include <set>
#include <vector>

template <int md> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
    using lint = long long;
    MDCONST static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    MDCONST ModInt() : val_(0) {}
    MDCONST ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    MDCONST ModInt(lint v) { _setval(v % md + md); }
    MDCONST explicit operator bool() const { return val_ != 0; }
    MDCONST ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    MDCONST ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    MDCONST ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    MDCONST ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    MDCONST ModInt operator-() const { return ModInt()._setval(md - val_); }
    MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend MDCONST ModInt operator+(lint a, const ModInt &x) {
        return ModInt()._setval(a % md + x.val_);
    }
    friend MDCONST ModInt operator-(lint a, const ModInt &x) {
        return ModInt()._setval(a % md - x.val_ + md);
    }
    friend MDCONST ModInt operator*(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.val_ % md);
    }
    friend MDCONST ModInt operator/(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.inv().val() % md);
    }
    MDCONST bool operator==(const ModInt &x) const { return val_ == x.val_; }
    MDCONST bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    MDCONST bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }
    MDCONST ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static std::vector<ModInt> facs, facinvs, invs;
    MDCONST static void _precalculation(int N) {
        int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }
    MDCONST ModInt inv() const {
        if (this->val_ < std::min(md >> 1, 1 << 21)) {
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }
    MDCONST ModInt fac() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val_];
    }
    MDCONST ModInt facinv() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val_];
    }
    MDCONST ModInt doublefac() const {
        lint k = (this->val_ + 1) / 2;
        return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                                : ModInt(k).fac() * ModInt(2).pow(k);
    }
    MDCONST ModInt nCr(const ModInt &r) const {
        return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv() * r.facinv();
    }
    MDCONST ModInt nPr(const ModInt &r) const {
        return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv();
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};
using mint = ModInt<998244353>;

#include <algorithm>
#include <array>
#include <cassert>
#include <tuple>
#include <vector>

// Integer convolution for arbitrary mod
// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.
// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.
// input: a (size: n), b (size: m)
// return: vector (size: n + m - 1)
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner);

constexpr int nttprimes[3] = {998244353, 167772161, 469762049};

// Integer FFT (Fast Fourier Transform) for ModInt class
// (Also known as Number Theoretic Transform, NTT)
// is_inverse: inverse transform
// ** Input size must be 2^n **
template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {
    int n = a.size();
    if (n == 1) return;
    static const int mod = MODINT::mod();
    static const MODINT root = MODINT::get_primitive_root();
    assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);

    static std::vector<MODINT> w{1}, iw{1};
    for (int m = w.size(); m < n / 2; m *= 2) {
        MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;
        w.resize(m * 2), iw.resize(m * 2);
        for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;
    }

    if (!is_inverse) {
        for (int m = n; m >>= 1;) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
                    MODINT x = a[i], y = a[i + m] * w[k];
                    a[i] = x + y, a[i + m] = x - y;
                }
            }
        }
    } else {
        for (int m = 1; m < n; m *= 2) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
                    MODINT x = a[i], y = a[i + m];
                    a[i] = x + y, a[i + m] = (x - y) * iw[k];
                }
            }
        }
        int n_inv = MODINT(n).inv().val();
        for (auto &v : a) v *= n_inv;
    }
}
template <int MOD>
std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {
    int sz = a.size();
    assert(a.size() == b.size() and __builtin_popcount(sz) == 1);
    std::vector<ModInt<MOD>> ap(sz), bp(sz);
    for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];
    ntt(ap, false);
    if (a == b)
        bp = ap;
    else
        ntt(bp, false);
    for (int i = 0; i < sz; i++) ap[i] *= bp[i];
    ntt(ap, true);
    return ap;
}
long long garner_ntt_(int r0, int r1, int r2, int mod) {
    using mint2 = ModInt<nttprimes[2]>;
    static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
    static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val();
    static const long long m01_inv_m2 = mint2(m01).inv().val();

    int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
    auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;
    return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod;
}
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {
    if (a.empty() or b.empty()) return {};
    int sz = 1, n = a.size(), m = b.size();
    while (sz < n + m) sz <<= 1;
    if (sz <= 16) {
        std::vector<MODINT> ret(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];
        }
        return ret;
    }
    int mod = MODINT::mod();
    if (skip_garner or
        std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {
        a.resize(sz), b.resize(sz);
        if (a == b) {
            ntt(a, false);
            b = a;
        } else {
            ntt(a, false), ntt(b, false);
        }
        for (int i = 0; i < sz; i++) a[i] *= b[i];
        ntt(a, true);
        a.resize(n + m - 1);
    } else {
        std::vector<int> ai(sz), bi(sz);
        for (int i = 0; i < n; i++) ai[i] = a[i].val();
        for (int i = 0; i < m; i++) bi[i] = b[i].val();
        auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);
        auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);
        auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);
        a.resize(n + m - 1);
        for (int i = 0; i < n + m - 1; i++)
            a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod);
    }
    return a;
}

template <typename MODINT>
std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) {
    return nttconv<MODINT>(a, b, false);
}

#include <algorithm>
#include <cassert>
#include <vector>

// Formal Power Series (形式的冪級数) based on ModInt<mod> / ModIntRuntime
// Reference: https://ei1333.github.io/luzhiled/snippets/math/formal-power-series.html
template <typename T> struct FormalPowerSeries : std::vector<T> {
    using std::vector<T>::vector;
    using P = FormalPowerSeries;

    void shrink() {
        while (this->size() and this->back() == T(0)) this->pop_back();
    }

    P operator+(const P &r) const { return P(*this) += r; }
    P operator+(const T &v) const { return P(*this) += v; }
    P operator-(const P &r) const { return P(*this) -= r; }
    P operator-(const T &v) const { return P(*this) -= v; }
    P operator*(const P &r) const { return P(*this) *= r; }
    P operator*(const T &v) const { return P(*this) *= v; }
    P operator/(const P &r) const { return P(*this) /= r; }
    P operator/(const T &v) const { return P(*this) /= v; }
    P operator%(const P &r) const { return P(*this) %= r; }

    P &operator+=(const P &r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
        shrink();
        return *this;
    }
    P &operator+=(const T &v) {
        if (this->empty()) this->resize(1);
        (*this)[0] += v;
        shrink();
        return *this;
    }
    P &operator-=(const P &r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
        shrink();
        return *this;
    }
    P &operator-=(const T &v) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= v;
        shrink();
        return *this;
    }
    P &operator*=(const T &v) {
        for (auto &x : (*this)) x *= v;
        shrink();
        return *this;
    }
    P &operator*=(const P &r) {
        if (this->empty() || r.empty())
            this->clear();
        else {
            auto ret = nttconv(*this, r);
            *this = P(ret.begin(), ret.end());
        }
        return *this;
    }
    P &operator%=(const P &r) {
        *this -= *this / r * r;
        shrink();
        return *this;
    }
    P operator-() const {
        P ret = *this;
        for (auto &v : ret) v = -v;
        return ret;
    }
    P &operator/=(const T &v) {
        assert(v != T(0));
        for (auto &x : (*this)) x /= v;
        return *this;
    }
    P &operator/=(const P &r) {
        if (this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int n = (int)this->size() - r.size() + 1;
        return *this = (reversed().pre(n) * r.reversed().inv(n)).pre(n).reversed(n);
    }
    P pre(int sz) const {
        P ret(this->begin(), this->begin() + std::min((int)this->size(), sz));
        ret.shrink();
        return ret;
    }
    P operator>>(int sz) const {
        if ((int)this->size() <= sz) return {};
        return P(this->begin() + sz, this->end());
    }
    P operator<<(int sz) const {
        if (this->empty()) return {};
        P ret(*this);
        ret.insert(ret.begin(), sz, T(0));
        return ret;
    }

    P reversed(int deg = -1) const {
        assert(deg >= -1);
        P ret(*this);
        if (deg != -1) ret.resize(deg, T(0));
        reverse(ret.begin(), ret.end());
        ret.shrink();
        return ret;
    }

    P differential() const { // formal derivative (differential) of f.p.s.
        const int n = (int)this->size();
        P ret(std::max(0, n - 1));
        for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
        return ret;
    }

    P integral() const {
        const int n = (int)this->size();
        P ret(n + 1);
        ret[0] = T(0);
        for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
        return ret;
    }

    P inv(int deg) const {
        assert(deg >= -1);
        assert(this->size() and ((*this)[0]) != T(0)); // Requirement: F(0) != 0
        const int n = this->size();
        if (deg == -1) deg = n;
        P ret({T(1) / (*this)[0]});
        for (int i = 1; i < deg; i <<= 1) {
            ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
        }
        ret = ret.pre(deg);
        ret.shrink();
        return ret;
    }

    P log(int deg = -1) const {
        assert(deg >= -1);
        assert(this->size() and ((*this)[0]) == T(1)); // Requirement: F(0) = 1
        const int n = (int)this->size();
        if (deg == 0) return {};
        if (deg == -1) deg = n;
        return (this->differential() * this->inv(deg)).pre(deg - 1).integral();
    }

    P sqrt(int deg = -1) const {
        assert(deg >= -1);
        const int n = (int)this->size();
        if (deg == -1) deg = n;
        if (this->empty()) return {};
        if ((*this)[0] == T(0)) {
            for (int i = 1; i < n; i++)
                if ((*this)[i] != T(0)) {
                    if ((i & 1) or deg - i / 2 <= 0) return {};
                    return (*this >> i).sqrt(deg - i / 2) << (i / 2);
                }
            return {};
        }
        T sqrtf0 = (*this)[0].sqrt();
        if (sqrtf0 == T(0)) return {};

        P y = (*this) / (*this)[0], ret({T(1)});
        T inv2 = T(1) / T(2);
        for (int i = 1; i < deg; i <<= 1) ret = (ret + y.pre(i << 1) * ret.inv(i << 1)) * inv2;
        return ret.pre(deg) * sqrtf0;
    }

    P exp(int deg = -1) const {
        assert(deg >= -1);
        assert(this->empty() or ((*this)[0]) == T(0)); // Requirement: F(0) = 0
        const int n = (int)this->size();
        if (deg == -1) deg = n;
        P ret({T(1)});
        for (int i = 1; i < deg; i <<= 1) {
            ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
        }
        return ret.pre(deg);
    }

    P pow(long long k, int deg = -1) const {
        assert(deg >= -1);
        const int n = (int)this->size();
        if (deg == -1) deg = n;
        for (int i = 0; i < n; i++) {
            if ((*this)[i] != T(0)) {
                T rev = T(1) / (*this)[i];
                P C = (*this) * rev, D(n - i);
                for (int j = i; j < n; j++) D[j - i] = C.coeff(j);
                D = (D.log(deg) * T(k)).exp(deg) * (*this)[i].pow(k);
                if (k * (i > 0) > deg or k * i > deg) return {};
                P E(deg);
                long long S = i * k;
                for (int j = 0; j + S < deg and j < (int)D.size(); j++) E[j + S] = D[j];
                E.shrink();
                return E;
            }
        }
        return *this;
    }

    // Calculate f(X + c) from f(X), O(NlogN)
    P shift(T c) const {
        const int n = (int)this->size();
        P ret = *this;
        for (int i = 0; i < n; i++) ret[i] *= T(i).fac();
        std::reverse(ret.begin(), ret.end());
        P exp_cx(n, 1);
        for (int i = 1; i < n; i++) exp_cx[i] = exp_cx[i - 1] * c / i;
        ret = (ret * exp_cx), ret.resize(n);
        std::reverse(ret.begin(), ret.end());
        for (int i = 0; i < n; i++) ret[i] /= T(i).fac();
        return ret;
    }

    T coeff(int i) const {
        if ((int)this->size() <= i or i < 0) return T(0);
        return (*this)[i];
    }

    T eval(T x) const {
        T ret = 0, w = 1;
        for (auto &v : *this) ret += w * v, w *= x;
        return ret;
    }
};

#include <algorithm>
#include <cassert>
#include <cmath>
#include <iterator>
#include <type_traits>
#include <utility>
#include <vector>

namespace matrix_ {
struct has_id_method_impl {
    template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type());
    template <class T_> static auto check(...) -> std::false_type;
};
template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {};
} // namespace matrix_

template <typename T> struct matrix {
    int H, W;
    std::vector<T> elem;
    typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }
    inline T &at(int i, int j) { return elem[i * W + j]; }
    inline T get(int i, int j) const { return elem[i * W + j]; }
    int height() const { return H; }
    int width() const { return W; }
    std::vector<std::vector<T>> vecvec() const {
        std::vector<std::vector<T>> ret(H);
        for (int i = 0; i < H; i++) {
            std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i]));
        }
        return ret;
    }
    operator std::vector<std::vector<T>>() const { return vecvec(); }
    matrix() = default;
    matrix(int H, int W) : H(H), W(W), elem(H * W) {}
    matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) {
        for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem));
    }

    template <typename T2, typename std::enable_if<matrix_::has_id<T2>::value>::type * = nullptr>
    static T2 _T_id() {
        return T2::id();
    }
    template <typename T2, typename std::enable_if<!matrix_::has_id<T2>::value>::type * = nullptr>
    static T2 _T_id() {
        return T2(1);
    }

    static matrix Identity(int N) {
        matrix ret(N, N);
        for (int i = 0; i < N; i++) ret.at(i, i) = _T_id<T>();
        return ret;
    }

    matrix operator-() const {
        matrix ret(H, W);
        for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i];
        return ret;
    }
    matrix operator*(const T &v) const {
        matrix ret = *this;
        for (auto &x : ret.elem) x *= v;
        return ret;
    }
    matrix operator/(const T &v) const {
        matrix ret = *this;
        const T vinv = _T_id<T>() / v;
        for (auto &x : ret.elem) x *= vinv;
        return ret;
    }
    matrix operator+(const matrix &r) const {
        matrix ret = *this;
        for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i];
        return ret;
    }
    matrix operator-(const matrix &r) const {
        matrix ret = *this;
        for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i];
        return ret;
    }
    matrix operator*(const matrix &r) const {
        matrix ret(H, r.W);
        for (int i = 0; i < H; i++) {
            for (int k = 0; k < W; k++) {
                for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j);
            }
        }
        return ret;
    }
    matrix &operator*=(const T &v) { return *this = *this * v; }
    matrix &operator/=(const T &v) { return *this = *this / v; }
    matrix &operator+=(const matrix &r) { return *this = *this + r; }
    matrix &operator-=(const matrix &r) { return *this = *this - r; }
    matrix &operator*=(const matrix &r) { return *this = *this * r; }
    bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; }
    bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; }
    bool operator<(const matrix &r) const { return elem < r.elem; }
    matrix pow(int64_t n) const {
        matrix ret = Identity(H);
        bool ret_is_id = true;
        if (n == 0) return ret;
        for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {
            if (!ret_is_id) ret *= ret;
            if ((n >> i) & 1) ret *= (*this), ret_is_id = false;
        }
        return ret;
    }
    std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const {
        matrix x = *this;
        while (n) {
            if (n & 1) vec = x * vec;
            x *= x;
            n >>= 1;
        }
        return vec;
    };
    matrix transpose() const {
        matrix ret(W, H);
        for (int i = 0; i < H; i++) {
            for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j);
        }
        return ret;
    }
    // Gauss-Jordan elimination
    // - Require inverse for every non-zero element
    // - Complexity: O(H^2 W)
    template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr>
    static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {
        int piv = -1;
        for (int j = h; j < mtr.H; j++) {
            if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c))))
                piv = j;
        }
        return piv;
    }
    template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr>
    static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {
        for (int j = h; j < mtr.H; j++) {
            if (mtr.get(j, c) != T2()) return j;
        }
        return -1;
    }
    matrix gauss_jordan() const {
        int c = 0;
        matrix mtr(*this);
        std::vector<int> ws;
        ws.reserve(W);
        for (int h = 0; h < H; h++) {
            if (c == W) break;
            int piv = choose_pivot(mtr, h, c);
            if (piv == -1) {
                c++;
                h--;
                continue;
            }
            if (h != piv) {
                for (int w = 0; w < W; w++) {
                    std::swap(mtr[piv][w], mtr[h][w]);
                    mtr.at(piv, w) *= -_T_id<T>(); // To preserve sign of determinant
                }
            }
            ws.clear();
            for (int w = c; w < W; w++) {
                if (mtr.at(h, w) != T()) ws.emplace_back(w);
            }
            const T hcinv = _T_id<T>() / mtr.at(h, c);
            for (int hh = 0; hh < H; hh++)
                if (hh != h) {
                    const T coeff = mtr.at(hh, c) * hcinv;
                    for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff;
                    mtr.at(hh, c) = T();
                }
            c++;
        }
        return mtr;
    }
    int rank_of_gauss_jordan() const {
        for (int i = H * W - 1; i >= 0; i--) {
            if (elem[i] != 0) return i / W + 1;
        }
        return 0;
    }
    int rank() const { return gauss_jordan().rank_of_gauss_jordan(); }

    T determinant_of_upper_triangle() const {
        T ret = _T_id<T>();
        for (int i = 0; i < H; i++) ret *= get(i, i);
        return ret;
    }
    int inverse() {
        assert(H == W);
        std::vector<std::vector<T>> ret = Identity(H), tmp = *this;
        int rank = 0;
        for (int i = 0; i < H; i++) {
            int ti = i;
            while (ti < H and tmp[ti][i] == 0) ti++;
            if (ti == H) {
                continue;
            } else {
                rank++;
            }
            ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]);
            T inv = _T_id<T>() / tmp[i][i];
            for (int j = 0; j < W; j++) ret[i][j] *= inv;
            for (int j = i + 1; j < W; j++) tmp[i][j] *= inv;
            for (int h = 0; h < H; h++) {
                if (i == h) continue;
                const T c = -tmp[h][i];
                for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c;
                for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c;
            }
        }
        *this = ret;
        return rank;
    }
    friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) {
        assert(m.W == int(v.size()));
        std::vector<T> ret(m.H);
        for (int i = 0; i < m.H; i++) {
            for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j];
        }
        return ret;
    }
    friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) {
        assert(int(v.size()) == m.H);
        std::vector<T> ret(m.W);
        for (int i = 0; i < m.H; i++) {
            for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j);
        }
        return ret;
    }
    std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; }
    std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); }
    template <class OStream> friend OStream &operator<<(OStream &os, const matrix &x) {
        os << "[(" << x.H << " * " << x.W << " matrix)";
        os << "\n[column sums: ";
        for (int j = 0; j < x.W; j++) {
            T s = 0;
            for (int i = 0; i < x.H; i++) s += x.get(i, j);
            os << s << ",";
        }
        os << "]";
        for (int i = 0; i < x.H; i++) {
            os << "\n[";
            for (int j = 0; j < x.W; j++) os << x.get(i, j) << ",";
            os << "]";
        }
        os << "]\n";
        return os;
    }
    template <class IStream> friend IStream &operator>>(IStream &is, matrix &x) {
        for (auto &v : x.elem) is >> v;
        return is;
    }
};

#include <utility>
#include <vector>

// Solve Ax = b for T = ModInt<PRIME>
// - retval: {one of the solution, {freedoms}} (if solution exists)
//           {{}, {}} (otherwise)
// Complexity:
// - Yield one of the possible solutions: O(H^2 W) (H: # of eqs., W: # of variables)
// - Enumerate all of the bases: O(HW(H + W))
template <typename T>
std::pair<std::vector<T>, std::vector<std::vector<T>>>
system_of_linear_equations(matrix<T> A, std::vector<T> b) {
    int H = A.height(), W = A.width();
    matrix<T> M(H, W + 1);
    for (int i = 0; i < H; i++) {
        for (int j = 0; j < W; j++) M[i][j] = A[i][j];
        M[i][W] = b[i];
    }
    M = M.gauss_jordan();
    std::vector<int> ss(W, -1);
    for (int i = 0; i < H; i++) {
        int j = 0;
        while (j <= W and M[i][j] == 0) j++;
        if (j == W) { // No solution
            return {{}, {}};
        }
        if (j < W) ss[j] = i;
    }
    std::vector<T> x(W);
    std::vector<std::vector<T>> D;
    for (int j = 0; j < W; j++) {
        if (ss[j] == -1) {
            std::vector<T> d(W);
            d[j] = 1;
            for (int jj = 0; jj < j; jj++) {
                if (ss[jj] != -1) d[jj] = -M[ss[jj]][j] / M[ss[jj]][jj];
            }
            D.emplace_back(d);
        } else
            x[j] = M[ss[j]][W] / M[ss[j]][j];
    }
    return std::make_pair(x, D);
}

using fps = FormalPowerSeries<mint>;

int main() {
    int N, K;
    cin >> N >> K;
    vector<mint> E(N);
    cin >> E;
    dbg(E);
    fps f(N + 1);
    REP(i, N) f[i + 1] = E[i];

    fps ret(N + 1);

    const int D = 20;
    vector<mint> coe;
    if (K > 0) {
        matrix<mint> mat(D, D);
        REP(e, D) mat[0][e] = 1;
        FOR(d, 1, D) REP(e, D) {
            mat[d][e] = mat[d - 1][e];
            if (e) mat[d][e] += mat[d][e - 1];
        }
        mat = mat.transpose();
        dbg(mat);
        vector<mint> vec(D);
        REP(d, D) vec[d] = mint(d + 1).pow(K);

        coe = system_of_linear_equations<mint>(mat, vec).first;
        dbg(coe);
        // coe
    } else {
        exit(1);
    }
    // REP(d, D) REP(e, D) mat[d][e] =

    dbg(f);
    fps g(N + 1);
    g[0] = 1;
    g -= f;
    dbg(g);
    g = g.inv(N + 1);
    dbg(g);
    REP(d, D) {
        // dbg(f / g);
        ret += f * g.pow(d + 1, N + 1) * coe.at(d);
    }

    // FOR(d, 1, N + 1) {
    //     auto tmp = f.pow(d, N + 1);
    //     if (K > 0) {
    //         REP(_, K) tmp *= d;
    //     }
    //     if (K < 0) {
    //         REP(_, -K) tmp /= d;
    //     }
    //     ret += tmp;
    // }

    FOR(i, 1, N + 1) cout << ret.coeff(i) << ' ';
}
0