結果

問題 No.1985 [Cherry 4th Tune] Early Summer Rain
ユーザー hitonanodehitonanode
提出日時 2022-06-17 23:05:02
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,354 ms / 7,000 ms
コード長 35,571 bytes
コンパイル時間 4,114 ms
コンパイル使用メモリ 229,920 KB
実行使用メモリ 30,028 KB
最終ジャッジ日時 2024-10-09 09:29:29
合計ジャッジ時間 32,700 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 5 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 9 ms
6,816 KB
testcase_07 AC 9 ms
6,820 KB
testcase_08 AC 9 ms
5,248 KB
testcase_09 AC 5 ms
5,248 KB
testcase_10 AC 5 ms
5,248 KB
testcase_11 AC 9 ms
5,248 KB
testcase_12 AC 4 ms
5,248 KB
testcase_13 AC 4 ms
5,248 KB
testcase_14 AC 138 ms
5,376 KB
testcase_15 AC 122 ms
10,256 KB
testcase_16 AC 296 ms
17,252 KB
testcase_17 AC 300 ms
7,220 KB
testcase_18 AC 633 ms
10,516 KB
testcase_19 AC 585 ms
29,876 KB
testcase_20 AC 276 ms
16,764 KB
testcase_21 AC 583 ms
29,656 KB
testcase_22 AC 300 ms
7,384 KB
testcase_23 AC 67 ms
5,248 KB
testcase_24 AC 789 ms
29,772 KB
testcase_25 AC 794 ms
29,900 KB
testcase_26 AC 790 ms
29,772 KB
testcase_27 AC 784 ms
29,908 KB
testcase_28 AC 1,349 ms
18,256 KB
testcase_29 AC 787 ms
29,900 KB
testcase_30 AC 1,353 ms
18,252 KB
testcase_31 AC 1,351 ms
18,380 KB
testcase_32 AC 1,351 ms
18,256 KB
testcase_33 AC 790 ms
29,900 KB
testcase_34 AC 787 ms
29,900 KB
testcase_35 AC 1,354 ms
18,384 KB
testcase_36 AC 785 ms
29,900 KB
testcase_37 AC 787 ms
30,028 KB
testcase_38 AC 1,353 ms
18,512 KB
testcase_39 AC 2 ms
5,248 KB
testcase_40 AC 1,215 ms
18,060 KB
testcase_41 AC 645 ms
29,460 KB
testcase_42 AC 1,280 ms
19,184 KB
testcase_43 AC 748 ms
29,572 KB
testcase_44 AC 946 ms
17,516 KB
testcase_45 AC 686 ms
17,516 KB
testcase_46 AC 1,216 ms
18,188 KB
testcase_47 AC 640 ms
29,364 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each
    (begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l
    .second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l
    .second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end());
    return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']';
    return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return
    is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << '
    ,'), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os;
    }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ',';
    os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os;
    }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';
    return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')';
    return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v
    .second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp)
    os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9
    ;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET <<
    endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ <<
    COLOR_RESET << endl : cerr)
#else
#define dbg(x) 0
#define dbgif(cond, x) 0
#endif
#include <iostream>
#include <set>
#include <vector>
template <int md> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
using lint = long long;
MDCONST static int mod() { return md; }
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = md - 1;
for (lint i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < md; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((md - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
int val_;
int val() const noexcept { return val_; }
MDCONST ModInt() : val_(0) {}
MDCONST ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
MDCONST ModInt(lint v) { _setval(v % md + md); }
MDCONST explicit operator bool() const { return val_ != 0; }
MDCONST ModInt operator+(const ModInt &x) const {
return ModInt()._setval((lint)val_ + x.val_);
}
MDCONST ModInt operator-(const ModInt &x) const {
return ModInt()._setval((lint)val_ - x.val_ + md);
}
MDCONST ModInt operator*(const ModInt &x) const {
return ModInt()._setval((lint)val_ * x.val_ % md);
}
MDCONST ModInt operator/(const ModInt &x) const {
return ModInt()._setval((lint)val_ * x.inv().val() % md);
}
MDCONST ModInt operator-() const { return ModInt()._setval(md - val_); }
MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
friend MDCONST ModInt operator+(lint a, const ModInt &x) {
return ModInt()._setval(a % md + x.val_);
}
friend MDCONST ModInt operator-(lint a, const ModInt &x) {
return ModInt()._setval(a % md - x.val_ + md);
}
friend MDCONST ModInt operator*(lint a, const ModInt &x) {
return ModInt()._setval(a % md * x.val_ % md);
}
friend MDCONST ModInt operator/(lint a, const ModInt &x) {
return ModInt()._setval(a % md * x.inv().val() % md);
}
MDCONST bool operator==(const ModInt &x) const { return val_ == x.val_; }
MDCONST bool operator!=(const ModInt &x) const { return val_ != x.val_; }
MDCONST bool operator<(const ModInt &x) const {
return val_ < x.val_;
} // To use std::map<ModInt, T>
friend std::istream &operator>>(std::istream &is, ModInt &x) {
lint t;
return is >> t, x = ModInt(t), is;
}
MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
return os << x.val_;
}
MDCONST ModInt pow(lint n) const {
ModInt ans = 1, tmp = *this;
while (n) {
if (n & 1) ans *= tmp;
tmp *= tmp, n >>= 1;
}
return ans;
}
static std::vector<ModInt> facs, facinvs, invs;
MDCONST static void _precalculation(int N) {
int l0 = facs.size();
if (N > md) N = md;
if (N <= l0) return;
facs.resize(N), facinvs.resize(N), invs.resize(N);
for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
facinvs[N - 1] = facs.back().pow(md - 2);
for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
}
MDCONST ModInt inv() const {
if (this->val_ < std::min(md >> 1, 1 << 21)) {
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return invs[this->val_];
} else {
return this->pow(md - 2);
}
}
MDCONST ModInt fac() const {
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return facs[this->val_];
}
MDCONST ModInt facinv() const {
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return facinvs[this->val_];
}
MDCONST ModInt doublefac() const {
lint k = (this->val_ + 1) / 2;
return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
: ModInt(k).fac() * ModInt(2).pow(k);
}
MDCONST ModInt nCr(const ModInt &r) const {
return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv() * r.facinv();
}
MDCONST ModInt nPr(const ModInt &r) const {
return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv();
}
ModInt sqrt() const {
if (val_ == 0) return 0;
if (md == 2) return val_;
if (pow((md - 1) / 2) != 1) return 0;
ModInt b = 1;
while (b.pow((md - 1) / 2) == 1) b += 1;
int e = 0, m = md - 1;
while (m % 2 == 0) m >>= 1, e++;
ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
x *= (*this);
ModInt z = b.pow(m);
while (y != 1) {
int j = 0;
ModInt t = y;
while (t != 1) j++, t *= t;
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return ModInt(std::min(x.val_, md - x.val_));
}
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};
using mint = ModInt<998244353>;
#include <algorithm>
#include <array>
#include <cassert>
#include <tuple>
#include <vector>
// Integer convolution for arbitrary mod
// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.
// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.
// input: a (size: n), b (size: m)
// return: vector (size: n + m - 1)
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner);
constexpr int nttprimes[3] = {998244353, 167772161, 469762049};
// Integer FFT (Fast Fourier Transform) for ModInt class
// (Also known as Number Theoretic Transform, NTT)
// is_inverse: inverse transform
// ** Input size must be 2^n **
template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {
int n = a.size();
if (n == 1) return;
static const int mod = MODINT::mod();
static const MODINT root = MODINT::get_primitive_root();
assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);
static std::vector<MODINT> w{1}, iw{1};
for (int m = w.size(); m < n / 2; m *= 2) {
MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;
w.resize(m * 2), iw.resize(m * 2);
for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;
}
if (!is_inverse) {
for (int m = n; m >>= 1;) {
for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
for (int i = s; i < s + m; i++) {
MODINT x = a[i], y = a[i + m] * w[k];
a[i] = x + y, a[i + m] = x - y;
}
}
}
} else {
for (int m = 1; m < n; m *= 2) {
for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
for (int i = s; i < s + m; i++) {
MODINT x = a[i], y = a[i + m];
a[i] = x + y, a[i + m] = (x - y) * iw[k];
}
}
}
int n_inv = MODINT(n).inv().val();
for (auto &v : a) v *= n_inv;
}
}
template <int MOD>
std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {
int sz = a.size();
assert(a.size() == b.size() and __builtin_popcount(sz) == 1);
std::vector<ModInt<MOD>> ap(sz), bp(sz);
for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];
ntt(ap, false);
if (a == b)
bp = ap;
else
ntt(bp, false);
for (int i = 0; i < sz; i++) ap[i] *= bp[i];
ntt(ap, true);
return ap;
}
long long garner_ntt_(int r0, int r1, int r2, int mod) {
using mint2 = ModInt<nttprimes[2]>;
static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val();
static const long long m01_inv_m2 = mint2(m01).inv().val();
int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;
return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod;
}
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {
if (a.empty() or b.empty()) return {};
int sz = 1, n = a.size(), m = b.size();
while (sz < n + m) sz <<= 1;
if (sz <= 16) {
std::vector<MODINT> ret(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];
}
return ret;
}
int mod = MODINT::mod();
if (skip_garner or
std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {
a.resize(sz), b.resize(sz);
if (a == b) {
ntt(a, false);
b = a;
} else {
ntt(a, false), ntt(b, false);
}
for (int i = 0; i < sz; i++) a[i] *= b[i];
ntt(a, true);
a.resize(n + m - 1);
} else {
std::vector<int> ai(sz), bi(sz);
for (int i = 0; i < n; i++) ai[i] = a[i].val();
for (int i = 0; i < m; i++) bi[i] = b[i].val();
auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);
auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);
auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);
a.resize(n + m - 1);
for (int i = 0; i < n + m - 1; i++)
a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod);
}
return a;
}
template <typename MODINT>
std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) {
return nttconv<MODINT>(a, b, false);
}
#include <algorithm>
#include <cassert>
#include <vector>
// Formal Power Series () based on ModInt<mod> / ModIntRuntime
// Reference: https://ei1333.github.io/luzhiled/snippets/math/formal-power-series.html
template <typename T> struct FormalPowerSeries : std::vector<T> {
using std::vector<T>::vector;
using P = FormalPowerSeries;
void shrink() {
while (this->size() and this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator/(const T &v) const { return P(*this) /= v; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
shrink();
return *this;
}
P &operator+=(const T &v) {
if (this->empty()) this->resize(1);
(*this)[0] += v;
shrink();
return *this;
}
P &operator-=(const P &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
P &operator-=(const T &v) {
if (this->empty()) this->resize(1);
(*this)[0] -= v;
shrink();
return *this;
}
P &operator*=(const T &v) {
for (auto &x : (*this)) x *= v;
shrink();
return *this;
}
P &operator*=(const P &r) {
if (this->empty() || r.empty())
this->clear();
else {
auto ret = nttconv(*this, r);
*this = P(ret.begin(), ret.end());
}
return *this;
}
P &operator%=(const P &r) {
*this -= *this / r * r;
shrink();
return *this;
}
P operator-() const {
P ret = *this;
for (auto &v : ret) v = -v;
return ret;
}
P &operator/=(const T &v) {
assert(v != T(0));
for (auto &x : (*this)) x /= v;
return *this;
}
P &operator/=(const P &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = (int)this->size() - r.size() + 1;
return *this = (reversed().pre(n) * r.reversed().inv(n)).pre(n).reversed(n);
}
P pre(int sz) const {
P ret(this->begin(), this->begin() + std::min((int)this->size(), sz));
ret.shrink();
return ret;
}
P operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
return P(this->begin() + sz, this->end());
}
P operator<<(int sz) const {
if (this->empty()) return {};
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P reversed(int deg = -1) const {
assert(deg >= -1);
P ret(*this);
if (deg != -1) ret.resize(deg, T(0));
reverse(ret.begin(), ret.end());
ret.shrink();
return ret;
}
P differential() const { // formal derivative (differential) of f.p.s.
const int n = (int)this->size();
P ret(std::max(0, n - 1));
for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int)this->size();
P ret(n + 1);
ret[0] = T(0);
for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
P inv(int deg) const {
assert(deg >= -1);
assert(this->size() and ((*this)[0]) != T(0)); // Requirement: F(0) != 0
const int n = this->size();
if (deg == -1) deg = n;
P ret({T(1) / (*this)[0]});
for (int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
ret = ret.pre(deg);
ret.shrink();
return ret;
}
P log(int deg = -1) const {
assert(deg >= -1);
assert(this->size() and ((*this)[0]) == T(1)); // Requirement: F(0) = 1
const int n = (int)this->size();
if (deg == 0) return {};
if (deg == -1) deg = n;
return (this->differential() * this->inv(deg)).pre(deg - 1).integral();
}
P sqrt(int deg = -1) const {
assert(deg >= -1);
const int n = (int)this->size();
if (deg == -1) deg = n;
if (this->empty()) return {};
if ((*this)[0] == T(0)) {
for (int i = 1; i < n; i++)
if ((*this)[i] != T(0)) {
if ((i & 1) or deg - i / 2 <= 0) return {};
return (*this >> i).sqrt(deg - i / 2) << (i / 2);
}
return {};
}
T sqrtf0 = (*this)[0].sqrt();
if (sqrtf0 == T(0)) return {};
P y = (*this) / (*this)[0], ret({T(1)});
T inv2 = T(1) / T(2);
for (int i = 1; i < deg; i <<= 1) ret = (ret + y.pre(i << 1) * ret.inv(i << 1)) * inv2;
return ret.pre(deg) * sqrtf0;
}
P exp(int deg = -1) const {
assert(deg >= -1);
assert(this->empty() or ((*this)[0]) == T(0)); // Requirement: F(0) = 0
const int n = (int)this->size();
if (deg == -1) deg = n;
P ret({T(1)});
for (int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
P pow(long long k, int deg = -1) const {
assert(deg >= -1);
const int n = (int)this->size();
if (deg == -1) deg = n;
for (int i = 0; i < n; i++) {
if ((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P C = (*this) * rev, D(n - i);
for (int j = i; j < n; j++) D[j - i] = C.coeff(j);
D = (D.log(deg) * T(k)).exp(deg) * (*this)[i].pow(k);
if (k * (i > 0) > deg or k * i > deg) return {};
P E(deg);
long long S = i * k;
for (int j = 0; j + S < deg and j < (int)D.size(); j++) E[j + S] = D[j];
E.shrink();
return E;
}
}
return *this;
}
// Calculate f(X + c) from f(X), O(NlogN)
P shift(T c) const {
const int n = (int)this->size();
P ret = *this;
for (int i = 0; i < n; i++) ret[i] *= T(i).fac();
std::reverse(ret.begin(), ret.end());
P exp_cx(n, 1);
for (int i = 1; i < n; i++) exp_cx[i] = exp_cx[i - 1] * c / i;
ret = (ret * exp_cx), ret.resize(n);
std::reverse(ret.begin(), ret.end());
for (int i = 0; i < n; i++) ret[i] /= T(i).fac();
return ret;
}
T coeff(int i) const {
if ((int)this->size() <= i or i < 0) return T(0);
return (*this)[i];
}
T eval(T x) const {
T ret = 0, w = 1;
for (auto &v : *this) ret += w * v, w *= x;
return ret;
}
};
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iterator>
#include <type_traits>
#include <utility>
#include <vector>
namespace matrix_ {
struct has_id_method_impl {
template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type());
template <class T_> static auto check(...) -> std::false_type;
};
template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {};
} // namespace matrix_
template <typename T> struct matrix {
int H, W;
std::vector<T> elem;
typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }
inline T &at(int i, int j) { return elem[i * W + j]; }
inline T get(int i, int j) const { return elem[i * W + j]; }
int height() const { return H; }
int width() const { return W; }
std::vector<std::vector<T>> vecvec() const {
std::vector<std::vector<T>> ret(H);
for (int i = 0; i < H; i++) {
std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i]));
}
return ret;
}
operator std::vector<std::vector<T>>() const { return vecvec(); }
matrix() = default;
matrix(int H, int W) : H(H), W(W), elem(H * W) {}
matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) {
for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem));
}
template <typename T2, typename std::enable_if<matrix_::has_id<T2>::value>::type * = nullptr>
static T2 _T_id() {
return T2::id();
}
template <typename T2, typename std::enable_if<!matrix_::has_id<T2>::value>::type * = nullptr>
static T2 _T_id() {
return T2(1);
}
static matrix Identity(int N) {
matrix ret(N, N);
for (int i = 0; i < N; i++) ret.at(i, i) = _T_id<T>();
return ret;
}
matrix operator-() const {
matrix ret(H, W);
for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i];
return ret;
}
matrix operator*(const T &v) const {
matrix ret = *this;
for (auto &x : ret.elem) x *= v;
return ret;
}
matrix operator/(const T &v) const {
matrix ret = *this;
const T vinv = _T_id<T>() / v;
for (auto &x : ret.elem) x *= vinv;
return ret;
}
matrix operator+(const matrix &r) const {
matrix ret = *this;
for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i];
return ret;
}
matrix operator-(const matrix &r) const {
matrix ret = *this;
for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i];
return ret;
}
matrix operator*(const matrix &r) const {
matrix ret(H, r.W);
for (int i = 0; i < H; i++) {
for (int k = 0; k < W; k++) {
for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j);
}
}
return ret;
}
matrix &operator*=(const T &v) { return *this = *this * v; }
matrix &operator/=(const T &v) { return *this = *this / v; }
matrix &operator+=(const matrix &r) { return *this = *this + r; }
matrix &operator-=(const matrix &r) { return *this = *this - r; }
matrix &operator*=(const matrix &r) { return *this = *this * r; }
bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; }
bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; }
bool operator<(const matrix &r) const { return elem < r.elem; }
matrix pow(int64_t n) const {
matrix ret = Identity(H);
bool ret_is_id = true;
if (n == 0) return ret;
for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {
if (!ret_is_id) ret *= ret;
if ((n >> i) & 1) ret *= (*this), ret_is_id = false;
}
return ret;
}
std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const {
matrix x = *this;
while (n) {
if (n & 1) vec = x * vec;
x *= x;
n >>= 1;
}
return vec;
};
matrix transpose() const {
matrix ret(W, H);
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j);
}
return ret;
}
// Gauss-Jordan elimination
// - Require inverse for every non-zero element
// - Complexity: O(H^2 W)
template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr>
static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {
int piv = -1;
for (int j = h; j < mtr.H; j++) {
if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c))))
piv = j;
}
return piv;
}
template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr>
static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {
for (int j = h; j < mtr.H; j++) {
if (mtr.get(j, c) != T2()) return j;
}
return -1;
}
matrix gauss_jordan() const {
int c = 0;
matrix mtr(*this);
std::vector<int> ws;
ws.reserve(W);
for (int h = 0; h < H; h++) {
if (c == W) break;
int piv = choose_pivot(mtr, h, c);
if (piv == -1) {
c++;
h--;
continue;
}
if (h != piv) {
for (int w = 0; w < W; w++) {
std::swap(mtr[piv][w], mtr[h][w]);
mtr.at(piv, w) *= -_T_id<T>(); // To preserve sign of determinant
}
}
ws.clear();
for (int w = c; w < W; w++) {
if (mtr.at(h, w) != T()) ws.emplace_back(w);
}
const T hcinv = _T_id<T>() / mtr.at(h, c);
for (int hh = 0; hh < H; hh++)
if (hh != h) {
const T coeff = mtr.at(hh, c) * hcinv;
for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff;
mtr.at(hh, c) = T();
}
c++;
}
return mtr;
}
int rank_of_gauss_jordan() const {
for (int i = H * W - 1; i >= 0; i--) {
if (elem[i] != 0) return i / W + 1;
}
return 0;
}
int rank() const { return gauss_jordan().rank_of_gauss_jordan(); }
T determinant_of_upper_triangle() const {
T ret = _T_id<T>();
for (int i = 0; i < H; i++) ret *= get(i, i);
return ret;
}
int inverse() {
assert(H == W);
std::vector<std::vector<T>> ret = Identity(H), tmp = *this;
int rank = 0;
for (int i = 0; i < H; i++) {
int ti = i;
while (ti < H and tmp[ti][i] == 0) ti++;
if (ti == H) {
continue;
} else {
rank++;
}
ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]);
T inv = _T_id<T>() / tmp[i][i];
for (int j = 0; j < W; j++) ret[i][j] *= inv;
for (int j = i + 1; j < W; j++) tmp[i][j] *= inv;
for (int h = 0; h < H; h++) {
if (i == h) continue;
const T c = -tmp[h][i];
for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c;
for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c;
}
}
*this = ret;
return rank;
}
friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) {
assert(m.W == int(v.size()));
std::vector<T> ret(m.H);
for (int i = 0; i < m.H; i++) {
for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j];
}
return ret;
}
friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) {
assert(int(v.size()) == m.H);
std::vector<T> ret(m.W);
for (int i = 0; i < m.H; i++) {
for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j);
}
return ret;
}
std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; }
std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); }
template <class OStream> friend OStream &operator<<(OStream &os, const matrix &x) {
os << "[(" << x.H << " * " << x.W << " matrix)";
os << "\n[column sums: ";
for (int j = 0; j < x.W; j++) {
T s = 0;
for (int i = 0; i < x.H; i++) s += x.get(i, j);
os << s << ",";
}
os << "]";
for (int i = 0; i < x.H; i++) {
os << "\n[";
for (int j = 0; j < x.W; j++) os << x.get(i, j) << ",";
os << "]";
}
os << "]\n";
return os;
}
template <class IStream> friend IStream &operator>>(IStream &is, matrix &x) {
for (auto &v : x.elem) is >> v;
return is;
}
};
#include <utility>
#include <vector>
// Solve Ax = b for T = ModInt<PRIME>
// - retval: {one of the solution, {freedoms}} (if solution exists)
// {{}, {}} (otherwise)
// Complexity:
// - Yield one of the possible solutions: O(H^2 W) (H: # of eqs., W: # of variables)
// - Enumerate all of the bases: O(HW(H + W))
template <typename T>
std::pair<std::vector<T>, std::vector<std::vector<T>>>
system_of_linear_equations(matrix<T> A, std::vector<T> b) {
int H = A.height(), W = A.width();
matrix<T> M(H, W + 1);
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) M[i][j] = A[i][j];
M[i][W] = b[i];
}
M = M.gauss_jordan();
std::vector<int> ss(W, -1);
for (int i = 0; i < H; i++) {
int j = 0;
while (j <= W and M[i][j] == 0) j++;
if (j == W) { // No solution
return {{}, {}};
}
if (j < W) ss[j] = i;
}
std::vector<T> x(W);
std::vector<std::vector<T>> D;
for (int j = 0; j < W; j++) {
if (ss[j] == -1) {
std::vector<T> d(W);
d[j] = 1;
for (int jj = 0; jj < j; jj++) {
if (ss[jj] != -1) d[jj] = -M[ss[jj]][j] / M[ss[jj]][jj];
}
D.emplace_back(d);
} else
x[j] = M[ss[j]][W] / M[ss[j]][j];
}
return std::make_pair(x, D);
}
using fps = FormalPowerSeries<mint>;
int main() {
int N, K;
cin >> N >> K;
vector<mint> E(N);
cin >> E;
dbg(E);
// auto Einv = E.inv(N + 1);
fps f(N + 1);
REP(i, N) f[i + 1] = E[i];
int cur = 0;
while (E[cur] == 0) ++cur;
fps fup(E.begin() + cur, E.end());
dbg(fup);
auto diff_of_log_f = f.differential() * fup.inv(N + 1);
dbg(diff_of_log_f);
diff_of_log_f.resize(cur + N + 1);
diff_of_log_f.erase(diff_of_log_f.begin(), diff_of_log_f.begin() + cur);
dbg(diff_of_log_f);
fps g(N + 1);
g[0] = 1;
g -= f;
g = g.inv(N + 1);
dbg(f);
dbg(g);
fps ret(N + 1);
const int D = 22;
vector<mint> coe;
if (K >= 0) {
matrix<mint> mat(D, D);
REP(e, D) mat[0][e] = 1;
FOR(d, 1, D) REP(e, D) {
mat[d][e] = mat[d - 1][e];
if (e) mat[d][e] += mat[d][e - 1];
}
mat = mat.transpose();
dbg(mat);
vector<mint> vec(D);
REP(d, D) vec[d] = mint(d + 1).pow(K);
coe = system_of_linear_equations<mint>(mat, vec).first;
dbg(coe);
// coe
} else {
// exit(1);
fps gd = g * f;
// gd[0] = 0;
dbg(gd);
REP(_, -K) {
// gd = (gd * diff_of_log_f).integral();
gd = gd * diff_of_log_f;
dbg(gd);
gd.resize(N + 2);
gd.erase(gd.begin());
gd = gd.integral();
gd.resize(N + 2);
}
FOR(i, 1, N + 1) cout << gd.coeff(i) << ' ';
return 0;
}
// REP(d, D) REP(e, D) mat[d][e] =
dbg(g);
fps gpow = g;
REP(d, D) {
// dbg(f / g);
ret += f * gpow * coe.at(d);
gpow *= g;
gpow.resize(N + 1);
}
// FOR(d, 1, N + 1) {
// auto tmp = f.pow(d, N + 1);
// if (K > 0) {
// REP(_, K) tmp *= d;
// }
// if (K < 0) {
// REP(_, -K) tmp /= d;
// }
// ret += tmp;
// }
FOR(i, 1, N + 1) cout << ret.coeff(i) << ' ';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0