結果
問題 | No.880 Yet Another Segment Tree Problem |
ユーザー | ecottea |
提出日時 | 2022-06-20 03:10:59 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,355 ms / 5,000 ms |
コード長 | 14,712 bytes |
コンパイル時間 | 4,277 ms |
コンパイル使用メモリ | 240,244 KB |
実行使用メモリ | 22,400 KB |
最終ジャッジ日時 | 2024-09-22 20:02:24 |
合計ジャッジ時間 | 27,841 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 4 ms
5,376 KB |
testcase_02 | AC | 5 ms
5,376 KB |
testcase_03 | AC | 6 ms
5,376 KB |
testcase_04 | AC | 4 ms
5,376 KB |
testcase_05 | AC | 4 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 5 ms
5,376 KB |
testcase_08 | AC | 5 ms
5,376 KB |
testcase_09 | AC | 6 ms
5,376 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | AC | 1,013 ms
21,208 KB |
testcase_12 | AC | 975 ms
21,536 KB |
testcase_13 | AC | 694 ms
20,976 KB |
testcase_14 | AC | 969 ms
22,016 KB |
testcase_15 | AC | 1,029 ms
22,016 KB |
testcase_16 | AC | 1,108 ms
22,272 KB |
testcase_17 | AC | 1,355 ms
22,252 KB |
testcase_18 | AC | 1,338 ms
22,272 KB |
testcase_19 | AC | 646 ms
22,016 KB |
testcase_20 | AC | 674 ms
22,348 KB |
testcase_21 | AC | 680 ms
21,884 KB |
testcase_22 | AC | 644 ms
22,084 KB |
testcase_23 | AC | 669 ms
21,888 KB |
testcase_24 | AC | 627 ms
22,144 KB |
testcase_25 | AC | 609 ms
22,400 KB |
testcase_26 | AC | 623 ms
21,880 KB |
testcase_27 | AC | 601 ms
22,120 KB |
testcase_28 | AC | 631 ms
21,888 KB |
testcase_29 | AC | 1,006 ms
22,000 KB |
testcase_30 | AC | 1,008 ms
22,016 KB |
testcase_31 | AC | 1,077 ms
22,036 KB |
testcase_32 | AC | 161 ms
22,272 KB |
testcase_33 | AC | 590 ms
22,016 KB |
testcase_34 | AC | 613 ms
22,072 KB |
testcase_35 | AC | 578 ms
22,084 KB |
testcase_36 | AC | 578 ms
22,144 KB |
testcase_37 | AC | 575 ms
22,144 KB |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; const int INF = 1001001001; const ll INFL = 4004004004004004004LL; const double EPS = 1e-12; // 許容誤差に応じて調整 // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define YES(b) {cout << ((b) ? "YES\n" : "NO\n");} #define rep(i, n) for(int i = 0, i##_len = ll(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #include "local.hpp" // 提出用(gcc) #else inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define input_from_file(f) #define output_to_file(f) #endif #endif // 折りたたみ用 //--------------AtCoder 専用-------------- #include <atcoder/all> using namespace atcoder; //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; //---------------------------------------- //【Segment tree beats!(不完全モノイド作用付きモノイド)】 /* * Lazy_segtree<S, op, e, F, act, comp, id, fail>(int n) : O(n) * v[0..n) = e() で初期化する. * 要素は不完全左作用付きモノイド (S, op, e, F, act, comp, id, fail) の元とする. * * Lazy_segtree<S, op, e, F, act, comp, id, fail>(vS v) : O(n) * 配列 v[0..n) の要素で初期化する. * * set(int i, S x) : O(α log n) * v[i] = x とする. * * S get(int i) : O(α log n) * v[i] を返す. * * S prod(int l, int r) : O(α log n) * Πv[l..r) を返す.空なら e() を返す. * * apply(int i, F f) : O(α log n) * v[i] = f( v[i] ) とする. * * apply(int l, int r, F f) : O(α log n) * v[l..r) = f( v[l..r) ) とする. * * int max_right(int l, function<bool(S)> g) : O(α log n) * g( Πv[l..r) ) = true となる最大の r を返す. * 制約:g( e() ) = true かつ g は単調 * * int min_left(int r, function<bool(S)> g) : O(α log n) * g( Πv[l..r) ) = true となる最小の l を返す. * 制約:g( e() ) = true かつ g は単調 */ template <class S, S(*op)(S, S), S(*e)(), class F, S(*act)(F, S), F(*comp)(F, F), F(*id)(), S(*fail)()> class Segtree_beats { // 参考 : https://rsm9.hatenablog.com/entry/2021/02/01/220408 int n; // 完全二分木の葉の数(必ず 2 冪) int actual_n; // 実際の要素数 // 完全二分木を実現する大きさ 2 * n の配列( v[0] は使用しない.) // 根は v[1] で,v[i] の親は v[i / 2],左右の子は v[2 * i], v[2 * i + 1] である. // 0-indexed での i 番目のデータは,葉である v[i + n] に入っている. vector<S> v; // 遅延評価用の完全二分木 vector<F> lazy; // 遅延させていた評価を行う.:O(1) void eval(int k) { // 遅延させていた評価がなければ何もしない. if (lazy[k] == id()) return; // 葉でなければ子に伝搬する. if (k < n) { // 左作用を考えているのでこの向きに合成する. lazy[k * 2] = comp(lazy[k], lazy[k * 2]); lazy[k * 2 + 1] = comp(lazy[k], lazy[k * 2 + 1]); } // 自身を評価する. v[k] = act(lazy[k], v[k]); lazy[k] = id(); // 評価に失敗した場合は子ノードの値から再計算する. if (v[k] == fail()) { eval(k * 2); eval(k * 2 + 1); v[k] = op(v[k * 2], v[k * 2 + 1]); } } // k : 注目ノード,[kl..kr) : ノード v[k] が表す区間 void set_sub(int i, S x, int k, int kl, int kr) { // まず自身の評価を行っておく. eval(k); // 範囲外なら何もしない. if (kr <= i || i < kl) return; // 葉まで降りてきたら値を代入して帰る. if (kl == i && kr == i + 1) { v[k] = x; return; } // 左右の子を見に行く. set_sub(i, x, k * 2, kl, (kl + kr) / 2); set_sub(i, x, k * 2 + 1, (kl + kr) / 2, kr); v[k] = op(v[k * 2], v[k * 2 + 1]); } // k : 注目ノード,[kl..kr) : ノード v[k] が表す区間 S prod_sub(int l, int r, int k, int kl, int kr) { // まず自身の評価を行っておく. eval(k); // 範囲外なら単位元 e() を返す. if (kr <= l || r <= kl) return e(); // 完全に範囲内なら葉まで降りず自身の値を返す. if (l <= kl && kr <= r) return v[k]; // 一部の範囲のみを含むなら子を見に行く. S vl = prod_sub(l, r, k * 2, kl, (kl + kr) / 2); S vr = prod_sub(l, r, k * 2 + 1, (kl + kr) / 2, kr); return op(vl, vr); } // k : 注目ノード,[kl, kr) : ノード v[k] が表す区間 void apply_sub(int l, int r, F f, int k, int kl, int kr) { // まず自身の評価を行っておく. eval(k); // 範囲外なら何もしない. if (kr <= l || r <= kl) return; // 完全に範囲内なら自身の値を更新する. if (l <= kl && kr <= r) { // 左作用を考えているのでこの向きに合成する. lazy[k] = comp(f, lazy[k]); eval(k); return; } // 一部の範囲のみを含むなら子を見に行く. apply_sub(l, r, f, k * 2, kl, (kl + kr) / 2); apply_sub(l, r, f, k * 2 + 1, (kl + kr) / 2, kr); v[k] = op(v[k * 2], v[k * 2 + 1]); } // k : 注目ノード,[kl..kr) : ノード v[k] が表す区間 int max_right_sub(int l, int r, S& x, int k, int kl, int kr, const function<bool(S)>& g) { // まず自身の評価を行っておく. eval(k); // 範囲外の場合 if (kr <= l || r <= kl) return r; // g( op( v[kl, kr) ) ) = true の場合 if (g(op(x, v[k]))) { x = op(x, v[k]); return r; } // 自身が葉であればその位置を返す. if (k >= n) return k - n; // まず左の部分木を見に行き,見つかったならそれを返す. int pos = max_right_sub(l, r, x, k * 2, kl, (kl + kr) / 2, g); if (pos != r) return pos; // 見つからなかったなら右の部分木も見にいき,結果を返す. return max_right_sub(l, r, x, k * 2 + 1, (kl + kr) / 2, kr, g); } // k : 注目ノード,[kl..kr) : ノード v[k] が表す区間 int min_left_sub(int l, int r, S& x, int k, int kl, int kr, const function<bool(S)>& g) { // まず自身の評価を行っておく. eval(k); // 範囲外の場合 if (kr <= l || r <= kl) return l - 1; // g( op( v[kl, kr) ) ) = true の場合 if (g(op(v[k], x))) { x = op(v[k], x); return l - 1; } // 自身が葉であればその位置を返す. if (k >= n) return k - n; // まず右の部分木を見に行き,見つかったならそれを返す. int pos = min_left_sub(l, r, x, k * 2 + 1, (kl + kr) / 2, kr, g); if (pos != l - 1) return pos; // 見つからなかったなら左の部分木も見にいき,結果を返す. return min_left_sub(l, r, x, k * 2, kl, (kl + kr) / 2, g); } public: // v[0..n) = e() で初期化する. Segtree_beats(int n_) : actual_n(n_) { // 要素数以上となる最小の 2 冪を求め,n とする. int pow2 = 1; while (pow2 < n_) pow2 *= 2; n = pow2; // 完全二分木を実現する大きさ 2 * n の配列を確保する. v = vector<S>(2 * n, e()); lazy = vector<F>(2 * n, id()); } // 配列 v[0..n) の要素で初期化する. Segtree_beats(vector<S>& v_) : Segtree_beats(sz(v_)) { // verify : https://atcoder.jp/contests/abc256/tasks/abc256_h // 全ての葉にデータを設定する. rep(i, sz(v_)) v[i + n] = v_[i]; // 全てのノードに正しい値を設定する. repir(i, n - 1, 1) v[i] = op(v[i * 2], v[i * 2 + 1]); } Segtree_beats() : n(0), actual_n(0) {} // ダミー // v[i] = x とする. void set(int i, S x) { set_sub(i, x, 1, 0, n); } // v[i] を返す. S get(int i) { return prod(i, i + 1); } // op( v[l..r) ) を返す.空なら e() を返す. S prod(int l, int r) { // verify : https://atcoder.jp/contests/abc256/tasks/abc256_h return prod_sub(l, r, 1, 0, n); } // v[i] = f( v[i] ) とする. void apply(int i, F f) { apply(i, i + 1, f); } // v[l..r) = f( v[l..r) ) とする. void apply(int l, int r, F f) { // verify : https://atcoder.jp/contests/abc256/tasks/abc256_h apply_sub(l, r, f, 1, 0, n); } // g( op( v[l..r) ) ) = true となる最大の r を返す. int max_right(int l, const function<bool(S)>& g) { S x = e(); return max_right_sub(l, actual_n, x, 1, 0, n, g); } // g( op( v[l..r) ) ) = true となる最小の l を返す. int min_left(int r, const function<bool(S)>& g) { S x = e(); return min_left_sub(0, r, x, 1, 0, n, g) + 1; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, Segtree_beats seg) { rep(i, seg.actual_n) os << seg.get(i) << " "; return os; } #endif }; //【GCD,変更 不完全作用付き max,加算 モノイド】 /* * S ∋ x = {s, m, c, b} : * c : 元の個数 * s : 元の和 * m : 元の最大値 * g : 元の GCD * l : 元の LCM * b : 元が全て等しいか * F ∋ f : * f >= 0 のとき,f(x) = gcd(x, f) を表す.(GCD 作用) * f < 0 のとき,f(x) = -f を表す.(変更作用) */ struct SA02 { ll s, m, g, l, c; bool b; bool operator==(const SA02& y) const { return s == y.s && m == y.m && c == y.c && b == y.b; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, SA02 s) { os << "(" << s.s << "," << s.m << "," << s.g << "," << s.l << "," << s.c << "," << s.b << ")"; return os; } #endif }; const ll LA02 = (ll)1e9 + 7; // 元の最大値より大きい素数 using FA02 = ll; SA02 failA02() { return SA02{ -1, -1, -1, -1, -1, false }; } SA02 opA02(SA02 x, SA02 y) { bool b = (x.c == 0 || y.c == 0 || (x.b && y.b && x.m == y.m)); ll l = (x.l == LA02 || y.l == LA02) ? LA02 : min(x.l / gcd(x.l, y.l) * y.l, LA02); return SA02{ x.s + y.s, max(x.m, y.m), gcd(x.g, y.g), l, x.c + y.c, b}; } SA02 eA02() { return SA02{ 0, -INFL, 0, 1, 0, true }; } SA02 actA02(FA02 f, SA02 x) { if (f < 0) return SA02{ -f * x.c, -f, -f, -f, x.c, true }; if (f % x.l == 0 || x.c == 0) return x; if (x.g % f == 0) return SA02{ f * x.c, f, f, f, x.c, true }; if (x.b) { ll g = gcd(x.m, f); return SA02{ g * x.c, g, g, x.m / g * f, x.c, true }; } return failA02(); } FA02 compA02(FA02 f, FA02 g) { if (f < 0 || g == 0) return f; if (f == 0) return g; if (g < 0) return -gcd(f, -g); return gcd(f, g); } FA02 idA02() { return 0; } #define GCDUp_MaxAdd_iamonoid SA02, opA02, eA02, FA02, actA02, compA02, idA02, failA02 int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n, q; cin >> n >> q; vector<SA02> a(n); rep(i, n) { ll av; cin >> av; a[i] = SA02{av, av, av, av, 1, true}; } Segtree_beats<GCDUp_MaxAdd_iamonoid> seg(a); rep(i, q) { int t; cin >> t; if (t == 1) { int l, r; ll x; cin >> l >> r >> x; l--; seg.apply(l, r, -x); } else if (t == 2) { int l, r; ll x; cin >> l >> r >> x; l--; seg.apply(l, r, x); } else if (t == 3) { int l, r; cin >> l >> r; l--; cout << seg.prod(l, r).m << endl; } else if (t == 4) { int l, r; cin >> l >> r; l--; cout << seg.prod(l, r).s << endl; } dump(seg); } }