結果

問題 No.300 平方数
ユーザー McGregorshMcGregorsh
提出日時 2022-06-20 14:05:41
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 135 ms / 1,000 ms
コード長 4,000 bytes
コンパイル時間 147 ms
コンパイル使用メモリ 82,408 KB
実行使用メモリ 90,068 KB
最終ジャッジ日時 2024-10-13 01:49:42
合計ジャッジ時間 7,124 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 120 ms
89,612 KB
testcase_01 AC 125 ms
89,628 KB
testcase_02 AC 122 ms
89,772 KB
testcase_03 AC 123 ms
89,452 KB
testcase_04 AC 124 ms
89,812 KB
testcase_05 AC 123 ms
89,596 KB
testcase_06 AC 122 ms
89,332 KB
testcase_07 AC 122 ms
89,708 KB
testcase_08 AC 119 ms
89,680 KB
testcase_09 AC 124 ms
89,584 KB
testcase_10 AC 122 ms
89,944 KB
testcase_11 AC 127 ms
89,568 KB
testcase_12 AC 128 ms
89,736 KB
testcase_13 AC 130 ms
89,880 KB
testcase_14 AC 121 ms
89,696 KB
testcase_15 AC 127 ms
89,732 KB
testcase_16 AC 128 ms
89,640 KB
testcase_17 AC 125 ms
89,656 KB
testcase_18 AC 120 ms
89,756 KB
testcase_19 AC 124 ms
89,400 KB
testcase_20 AC 122 ms
89,708 KB
testcase_21 AC 121 ms
89,728 KB
testcase_22 AC 124 ms
89,316 KB
testcase_23 AC 135 ms
89,796 KB
testcase_24 AC 128 ms
90,056 KB
testcase_25 AC 124 ms
89,988 KB
testcase_26 AC 121 ms
90,048 KB
testcase_27 AC 128 ms
89,892 KB
testcase_28 AC 128 ms
89,704 KB
testcase_29 AC 130 ms
89,748 KB
testcase_30 AC 124 ms
89,940 KB
testcase_31 AC 123 ms
89,764 KB
testcase_32 AC 125 ms
89,716 KB
testcase_33 AC 128 ms
89,832 KB
testcase_34 AC 129 ms
90,068 KB
testcase_35 AC 135 ms
89,980 KB
testcase_36 AC 129 ms
89,988 KB
testcase_37 AC 126 ms
90,052 KB
testcase_38 AC 121 ms
89,524 KB
testcase_39 AC 123 ms
89,992 KB
testcase_40 AC 125 ms
89,900 KB
testcase_41 AC 127 ms
89,768 KB
testcase_42 AC 122 ms
89,440 KB
testcase_43 AC 120 ms
89,652 KB
testcase_44 AC 124 ms
89,892 KB
testcase_45 AC 124 ms
89,840 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###素因数分解###

def prime_factorize(n: int) -> list:
   return_list = []
   while n % 2 == 0:
   	  return_list.append(2)
   	  n //= 2
   f = 3
   while f * f <= n:
   	  if n % f == 0:
   	  	  return_list.append(f)
   	  	  n //= f
   	  else:
   	  	  f += 2
   if n != 1:
   	  return_list.append(n)
   return return_list


###ある数が素数かどうかの判定###

import math

def is_prime(n):
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n):
	  	  if n % i == 0:
	  	  	  return False
	  return True


###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


def main():
   
   x = int(input())
   
   if x ** 0.5 % 2 == 0:
   	  print(1)
   else:
   	  nums = prime_factorize(x)
   	  count = Counter(nums)
   	  ans = 1
   	  for key, value in count.items():
   	  	  if value % 2 == 1:
   	  	  	  ans *= key
   	  print(ans)
   	  
   
if __name__ == '__main__':
    main()

0