結果
問題 | No.407 鴨等素数間隔列の数え上げ |
ユーザー | McGregorsh |
提出日時 | 2022-06-22 12:57:05 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,560 bytes |
コンパイル時間 | 1,586 ms |
コンパイル使用メモリ | 81,644 KB |
実行使用メモリ | 100,872 KB |
最終ジャッジ日時 | 2024-10-15 16:56:27 |
合計ジャッジ時間 | 8,523 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 177 ms
100,836 KB |
testcase_01 | AC | 176 ms
100,804 KB |
testcase_02 | AC | 177 ms
100,656 KB |
testcase_03 | AC | 179 ms
100,684 KB |
testcase_04 | AC | 177 ms
100,304 KB |
testcase_05 | AC | 177 ms
100,624 KB |
testcase_06 | AC | 179 ms
100,752 KB |
testcase_07 | AC | 176 ms
100,736 KB |
testcase_08 | AC | 178 ms
100,452 KB |
testcase_09 | AC | 176 ms
100,552 KB |
testcase_10 | AC | 178 ms
100,784 KB |
testcase_11 | AC | 175 ms
100,604 KB |
testcase_12 | AC | 177 ms
100,428 KB |
testcase_13 | AC | 174 ms
100,848 KB |
testcase_14 | AC | 176 ms
100,720 KB |
testcase_15 | AC | 176 ms
100,364 KB |
testcase_16 | AC | 177 ms
100,432 KB |
testcase_17 | AC | 175 ms
100,632 KB |
testcase_18 | AC | 181 ms
100,700 KB |
testcase_19 | AC | 181 ms
100,824 KB |
testcase_20 | WA | - |
testcase_21 | AC | 178 ms
100,604 KB |
testcase_22 | AC | 177 ms
100,736 KB |
testcase_23 | AC | 176 ms
100,620 KB |
testcase_24 | AC | 176 ms
100,596 KB |
testcase_25 | WA | - |
testcase_26 | AC | 181 ms
100,432 KB |
testcase_27 | AC | 181 ms
100,648 KB |
testcase_28 | AC | 174 ms
100,728 KB |
testcase_29 | AC | 176 ms
100,636 KB |
testcase_30 | AC | 177 ms
100,552 KB |
testcase_31 | AC | 178 ms
100,872 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
ソースコード
###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr import sys, re from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 def main(): n, l = i_map() sosuu = sieve_of_eratosthenes(10**6+1000) sosu_num = [] for i in range(10**6+1000): if sosuu[i]: sosu_num.append(i) ans = 0 for i in range(len(sosu_num)): if (n-1) * sosu_num[i] > l: break top = (n-1) * sosu_num[i] ans += l - top + 1 #print(ans) print(ans) if __name__ == '__main__': main()