結果
問題 | No.407 鴨等素数間隔列の数え上げ |
ユーザー | McGregorsh |
提出日時 | 2022-06-22 13:01:22 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 614 ms / 1,000 ms |
コード長 | 3,550 bytes |
コンパイル時間 | 211 ms |
コンパイル使用メモリ | 81,536 KB |
実行使用メモリ | 213,504 KB |
最終ジャッジ日時 | 2024-10-15 17:02:43 |
合計ジャッジ時間 | 23,820 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 608 ms
213,120 KB |
testcase_01 | AC | 604 ms
213,376 KB |
testcase_02 | AC | 604 ms
213,248 KB |
testcase_03 | AC | 611 ms
213,348 KB |
testcase_04 | AC | 602 ms
213,300 KB |
testcase_05 | AC | 605 ms
212,992 KB |
testcase_06 | AC | 609 ms
212,992 KB |
testcase_07 | AC | 601 ms
212,992 KB |
testcase_08 | AC | 605 ms
213,304 KB |
testcase_09 | AC | 603 ms
213,268 KB |
testcase_10 | AC | 610 ms
212,964 KB |
testcase_11 | AC | 603 ms
213,236 KB |
testcase_12 | AC | 603 ms
213,156 KB |
testcase_13 | AC | 601 ms
212,864 KB |
testcase_14 | AC | 599 ms
213,244 KB |
testcase_15 | AC | 604 ms
212,992 KB |
testcase_16 | AC | 609 ms
213,120 KB |
testcase_17 | AC | 604 ms
213,376 KB |
testcase_18 | AC | 599 ms
213,504 KB |
testcase_19 | AC | 603 ms
213,120 KB |
testcase_20 | AC | 605 ms
212,992 KB |
testcase_21 | AC | 600 ms
213,120 KB |
testcase_22 | AC | 595 ms
213,232 KB |
testcase_23 | AC | 608 ms
212,992 KB |
testcase_24 | AC | 614 ms
213,248 KB |
testcase_25 | AC | 608 ms
212,864 KB |
testcase_26 | AC | 608 ms
212,992 KB |
testcase_27 | AC | 607 ms
212,992 KB |
testcase_28 | AC | 602 ms
212,992 KB |
testcase_29 | AC | 604 ms
213,120 KB |
testcase_30 | AC | 603 ms
213,120 KB |
testcase_31 | AC | 605 ms
213,120 KB |
testcase_32 | AC | 606 ms
213,248 KB |
testcase_33 | AC | 611 ms
213,248 KB |
testcase_34 | AC | 610 ms
213,244 KB |
testcase_35 | AC | 604 ms
213,120 KB |
ソースコード
###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr import sys, re from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 def main(): n, l = i_map() sosuu = sieve_of_eratosthenes(10**7) sosu_num = [] for i in range(10**7): if sosuu[i]: sosu_num.append(i) ans = 0 for i in range(len(sosu_num)): if (n-1) * sosu_num[i] > l: break top = (n-1) * sosu_num[i] ans += l - top + 1 #print(ans) print(ans) if __name__ == '__main__': main()