結果

問題 No.407 鴨等素数間隔列の数え上げ
ユーザー McGregorshMcGregorsh
提出日時 2022-06-22 13:01:22
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 614 ms / 1,000 ms
コード長 3,550 bytes
コンパイル時間 211 ms
コンパイル使用メモリ 81,536 KB
実行使用メモリ 213,504 KB
最終ジャッジ日時 2024-10-15 17:02:43
合計ジャッジ時間 23,820 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 608 ms
213,120 KB
testcase_01 AC 604 ms
213,376 KB
testcase_02 AC 604 ms
213,248 KB
testcase_03 AC 611 ms
213,348 KB
testcase_04 AC 602 ms
213,300 KB
testcase_05 AC 605 ms
212,992 KB
testcase_06 AC 609 ms
212,992 KB
testcase_07 AC 601 ms
212,992 KB
testcase_08 AC 605 ms
213,304 KB
testcase_09 AC 603 ms
213,268 KB
testcase_10 AC 610 ms
212,964 KB
testcase_11 AC 603 ms
213,236 KB
testcase_12 AC 603 ms
213,156 KB
testcase_13 AC 601 ms
212,864 KB
testcase_14 AC 599 ms
213,244 KB
testcase_15 AC 604 ms
212,992 KB
testcase_16 AC 609 ms
213,120 KB
testcase_17 AC 604 ms
213,376 KB
testcase_18 AC 599 ms
213,504 KB
testcase_19 AC 603 ms
213,120 KB
testcase_20 AC 605 ms
212,992 KB
testcase_21 AC 600 ms
213,120 KB
testcase_22 AC 595 ms
213,232 KB
testcase_23 AC 608 ms
212,992 KB
testcase_24 AC 614 ms
213,248 KB
testcase_25 AC 608 ms
212,864 KB
testcase_26 AC 608 ms
212,992 KB
testcase_27 AC 607 ms
212,992 KB
testcase_28 AC 602 ms
212,992 KB
testcase_29 AC 604 ms
213,120 KB
testcase_30 AC 603 ms
213,120 KB
testcase_31 AC 605 ms
213,120 KB
testcase_32 AC 606 ms
213,248 KB
testcase_33 AC 611 ms
213,248 KB
testcase_34 AC 610 ms
213,244 KB
testcase_35 AC 604 ms
213,120 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


def main():
   
   n, l = i_map()
   sosuu = sieve_of_eratosthenes(10**7)
   sosu_num = []
   for i in range(10**7):
   	  if sosuu[i]:
   	  	  sosu_num.append(i)
   
   ans = 0
   for i in range(len(sosu_num)):
   	  if (n-1) * sosu_num[i] > l:
   	  	  break
   	  
   	  top = (n-1) * sosu_num[i]
   	  ans += l - top + 1
   	  #print(ans)
   print(ans)
   
   
   
if __name__ == '__main__':
    main()

0