結果

問題 No.442 和と積
ユーザー McGregorshMcGregorsh
提出日時 2022-06-23 22:46:10
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 4,009 bytes
コンパイル時間 529 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 94,848 KB
最終ジャッジ日時 2024-11-07 16:37:05
合計ジャッジ時間 6,314 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 152 ms
94,848 KB
testcase_01 AC 147 ms
89,600 KB
testcase_02 AC 150 ms
89,600 KB
testcase_03 AC 149 ms
89,728 KB
testcase_04 AC 152 ms
89,600 KB
testcase_05 AC 157 ms
89,344 KB
testcase_06 AC 151 ms
89,600 KB
testcase_07 AC 161 ms
89,600 KB
testcase_08 AC 161 ms
89,344 KB
testcase_09 AC 169 ms
89,728 KB
testcase_10 AC 148 ms
89,472 KB
testcase_11 AC 146 ms
89,344 KB
testcase_12 AC 148 ms
89,472 KB
testcase_13 AC 150 ms
89,472 KB
testcase_14 AC 146 ms
89,344 KB
testcase_15 AC 148 ms
89,600 KB
testcase_16 AC 153 ms
89,472 KB
testcase_17 AC 156 ms
89,472 KB
testcase_18 AC 148 ms
89,344 KB
testcase_19 AC 152 ms
89,472 KB
testcase_20 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

###素因数分解###

def prime_factorize(n: int) -> list:
   return_list = []
   while n % 2 == 0:
   	  return_list.append(2)
   	  n //= 2
   f = 3
   while f * f <= n:
   	  if n % f == 0:
   	  	  return_list.append(f)
   	  	  n //= f
   	  else:
   	  	  f += 2
   if n != 1:
   	  return_list.append(n)
   return return_list


###ある数が素数かどうかの判定###

import math

def is_prime(n):
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n):
	  	  if n % i == 0:
	  	  	  return False
	  return True


###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


def main():
   
   a, b = i_map()
   
   num = prime_factorize(a+b)
   num.sort(reverse=True)
   
   line = a * b
   
   ans = 1
   for i in range(len(num)):
   	  if line == 0:
   	  	  break
   	  if line % num[i] == 0:
   	  	  line //= num[i]
   	  	  ans *= num[i]
   print(ans)
   
if __name__ == '__main__':
    main()

0