結果

問題 No.529 帰省ラッシュ
ユーザー maspymaspy
提出日時 2022-06-25 15:10:31
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 231 ms / 4,500 ms
コード長 29,146 bytes
コンパイル時間 3,677 ms
コンパイル使用メモリ 235,360 KB
実行使用メモリ 40,204 KB
最終ジャッジ日時 2024-04-26 21:43:26
合計ジャッジ時間 8,309 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 3 ms
5,376 KB
testcase_05 AC 3 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 AC 93 ms
22,796 KB
testcase_09 AC 97 ms
21,260 KB
testcase_10 AC 130 ms
26,112 KB
testcase_11 AC 127 ms
26,372 KB
testcase_12 AC 75 ms
16,808 KB
testcase_13 AC 130 ms
40,204 KB
testcase_14 AC 83 ms
24,332 KB
testcase_15 AC 226 ms
28,788 KB
testcase_16 AC 231 ms
28,836 KB
testcase_17 AC 181 ms
37,984 KB
testcase_18 AC 191 ms
38,180 KB
testcase_19 AC 181 ms
35,684 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "test/yukicoder/529_two_edge.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/529"
#line 1 "my_template.hpp"
#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

template <typename T>
T SUM(vector<T> &A) {
  T sum = T(0);
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

ll binary_search(function<bool(ll)> check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    if (check(x))
      ok = x;
    else
      ng = x;
  }
  return ok;
}

template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    if (check(x)) {
      ok = x;
    } else {
      ng = x;
    }
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vi s_to_vi(const string &S, char first_char) {
  vi A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T>
vector<T> cumsum(vector<T> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

template <typename T>
vector<int> argsort(const vector<T> &A) {
  // stable
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(A);
  assert(len(I) == n);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#line 1 "other/io.hpp"
// based on yosupo's fastio

#include <unistd.h>

namespace detail {
template <typename T, decltype(&T::is_modint) = &T::is_modint>
std::true_type check_value(int);
template <typename T>
std::false_type check_value(long);
} // namespace detail


template <typename T>
struct is_modint : decltype(detail::check_value<T>(0)) {};
template <typename T>
using is_modint_t = enable_if_t<is_modint<T>::value>;
template <typename T>
using is_not_modint_t = enable_if_t<!is_modint<T>::value>;

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <class T, is_modint_t<T> * = nullptr>
  bool read_single(T &ref) {
    long long val = 0;
    bool f = read_single(val);
    ref = T(val);
    return f;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <class A, class B, class C>
  bool read_single(tuple<A, B, C> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)));
  }
  template <class A, class B, class C, class D>
  bool read_single(tuple<A, B, C, D> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)) && read_single(get<3>(p)));
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char &val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min

    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string &s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double &x) {
    ostringstream oss;
    oss << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double &x) {
    ostringstream oss;
    oss << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <class T, is_modint_t<T> * = nullptr>
  void write(T &ref) {
    write(ref.val);
  }
  template <class T>
  void write(const vector<T> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> &val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <class A, class B, class C>
  void write(const tuple<A, B, C> &val) {
    auto &[a, b, c] = val;
    write(a), write(' '), write(b), write(' '), write(c);
  }
  template <class A, class B, class C, class D>
  void write(const tuple<A, B, C, D> &val) {
    auto &[a, b, c, d] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d);
  }
  template <class A, class B, class C, class D, class E>
  void write(const tuple<A, B, C, D, E> &val) {
    auto &[a, b, c, d, e] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e);
  }
  template <class A, class B, class C, class D, class E, class F>
  void write(const tuple<A, B, C, D, E, F> &val) {
    auto &[a, b, c, d, e, f] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f);
  }
  template <class T, size_t S>
  void write(const array<T, S> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if(val < 0){
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if(negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};

Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);

void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)      \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    int l, r;
    const Graph* G;
  };

  bool is_prepared() { return prepared; }
  constexpr bool is_directed() { return directed; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    FOR(M) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }

  void read_parent(int off = 1) {
    FOR3(v, 1, N) {
      INT(p);
      p -= off;
      add(p, v);
    }
    build();
  }

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    FOR(v, N) indptr[v + 1] += indptr[v];
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
};
#line 3 "graph/hld.hpp"

/*
HL分解。O(N) 時間構築。
LCA, LA などは O(logN) 時間。
木以外、非連結でも使えるようにした。dfs順序や親がとれる。
*/
template <typename Graph>
struct HLD {
  Graph &G;
  using Graph_type = Graph;
  using WT = typename Graph::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, root;
  vc<int> depth;
  vc<WT> depth_weighted;
  vector<bool> in_tree;

  HLD(Graph &G, int r = -1)
      : G(G),
        N(G.N),
        LID(G.N),
        RID(G.N),
        head(G.N, r),
        V(G.N),
        parent(G.N, -1),
        depth(G.N, -1),
        depth_weighted(G.N, 0),
        root(G.N, -1),
        in_tree(G.M, 0) {
    assert(G.is_prepared());
    int t1 = 0;
    if (r != -1) {
      dfs_sz(r, -1);
      dfs_hld(r, t1);
    } else {
      FOR(r, N) if (parent[r] == -1) {
        head[r] = r;
        dfs_sz(r, -1);
        dfs_hld(r, t1);
      }
    }
    for (auto &&v: V) root[v] = (parent[v] == -1 ? v : root[parent[v]]);
  }

  void dfs_sz(int v, int p) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする

    FOR3_R(i, l, r - 1) {
      if (depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      in_tree[e.id] = 1;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      dfs_sz(e.to, v);
      sz[v] += sz[e.to];
      if (chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (!in_tree[e.id] || depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  /* k: 0-indexed */
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int lca(int u, int v) { return LCA(u, v); }
  int la(int u, int v) { return LA(u, v); }

  int subtree_size(int v) { return RID[v] - LID[v]; }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist(int a, int b, bool weighted) {
    assert(weighted);
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - 2 * depth_weighted[c];
  }

  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int move(int a, int b) {
    assert(a != b);
    return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。

    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  void debug() {
    print("V", V);
    print("LID", LID);
    print("RID", RID);
    print("parent", parent);
    print("depth", depth);
    print("head", head);
    print("in_tree(edge)", in_tree);
    print("root", root);
  }
};
#line 2 "graph/two_edge_component.hpp"

// (成分数, 成分番号の vector)

template <typename Graph>
pair<int, vc<int>> two_edge_component(Graph& G) {
  HLD hld(G);
  int N = G.N;
  vc<int> DP(N);
  for (auto&& e: G.edges) {
    if (!hld.in_tree[e.id]) {
      int a = e.frm, b = e.to;
      if (hld.depth[a] < hld.depth[b]) swap(a, b);
      DP[a]++, DP[b]--;
    }
  }
  auto& V = hld.V;
  FOR_R(i, len(V)) {
    int v = V[i];
    int p = hld.parent[v];
    if (p != -1) DP[p] += DP[v];
  }
  int C = 0;
  vc<int> comp(N, -1);
  FOR(v, N) if (DP[v] == 0) comp[v] = C++;
  for (auto&& v: V)
    if (comp[v] == -1) comp[v] = comp[hld.parent[v]];
  return {C, comp};
}
#line 2 "ds/segtree.hpp"

template <class Monoid>
struct SegTree {
  using X = typename Monoid::value_type;
  using value_type = X;
  vc<X> dat;
  int n, log, size;

  SegTree() : SegTree(0) {}
  SegTree(int n) : SegTree(vc<X>(n, Monoid::unit())) {}
  SegTree(vc<X> v) : n(len(v)) {
    log = 1;
    while ((1 << log) < n) ++log;
    size = 1 << log;
    dat.assign(size << 1, Monoid::unit());
    FOR(i, n) dat[size + i] = v[i];
    FOR3_R(i, 1, size) update(i);
  }

  void reset() { fill(all(dat), Monoid::unit()); }

  void set_all(const vc<X>& v){
    dat.assign(size << 1, Monoid::unit());
    FOR(i, n) dat[size + i] = v[i];
    FOR3_R(i, 1, size) update(i);
  }

  X operator[](int i) { return dat[size + i]; }

  void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }

  void set(int i, const X& x) {
    assert(i < n);
    dat[i += size] = x;
    while (i >>= 1) update(i);
  }

  void multiply(int i, const X& x){
    assert(i < n);
    i += size;
    dat[i] = Monoid::op(dat[i], x);
    while (i >>= 1) update(i);
  }

  X prod(int L, int R) {
    assert(L <= R);
    assert(R <= n);
    X vl = Monoid::unit(), vr = Monoid::unit();
    L += size, R += size;
    while (L < R) {
      if (L & 1) vl = Monoid::op(vl, dat[L++]);
      if (R & 1) vr = Monoid::op(dat[--R], vr);
      L >>= 1, R >>= 1;
    }
    return Monoid::op(vl, vr);
  }

  X prod_all() { return dat[1]; }

  template <class F>
  int max_right(F &check, int L) {
    assert(0 <= L && L <= n && check(Monoid::unit()));
    if (L == n) return n;
    L += size;
    X sm = Monoid::unit();
    do {
      while (L % 2 == 0) L >>= 1;
      if (!check(Monoid::op(sm, dat[L]))) {
        while (L < size) {
          L = 2 * L;
          if (check(Monoid::op(sm, dat[L]))) {
            sm = Monoid::op(sm, dat[L]);
            L++;
          }
        }
        return L - size;
      }
      sm = Monoid::op(sm, dat[L]);
      L++;
    } while ((L & -L) != L);
    return n;
  }

  template <class F>
  int min_left(F &check, int R) {
    assert(0 <= R && R <= n && check(Monoid::unit()));
    if (R == 0) return 0;
    R += size;
    X sm = Monoid::unit();
    do {
      --R;
      while (R > 1 && (R % 2)) R >>= 1;
      if (!check(Monoid::op(dat[R], sm))) {
        while (R < size) {
          R = 2 * R + 1;
          if (check(Monoid::op(dat[R], sm))) {
            sm = Monoid::op(dat[R], sm);
            R--;
          }
        }
        return R + 1 - size;
      }
      sm = Monoid::op(dat[R], sm);
    } while ((R & -R) != R);
    return 0;
  }

  // モノイドが可換なら、prod_{l<=i<r}A[i^x] が計算可能
  // https://codeforces.com/contest/1401/problem/F
  X Xor_prod(int l, int r, int xor_val) {
    assert(Monoid::commute);
    X x = Monoid::unit();
    FOR(k, log + 1) {
      if (l >= r) break;
      if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
      if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
      l /= 2, r /= 2, xor_val /= 2;
    }
    return x;
  }

  void debug() { print("segtree", dat); }
};
#line 2 "alg/monoid_reverse.hpp"
template <class Monoid>
struct Monoid_Reverse {
  using value_type = typename Monoid::value_type;
  using X = value_type;
  static constexpr X op(const X &x, const X &y) { return Monoid::op(y, x); }
  static constexpr X unit() { return Monoid::unit(); }
  static const bool commute = Monoid::commute;
};
#line 5 "graph/treemonoid.hpp"

template <typename HLD, typename Monoid, bool edge = false>
struct TreeMonoid {
  using RevMonoid = Monoid_Reverse<Monoid>;
  using X = typename Monoid::value_type;
  HLD &hld;
  int N;
  SegTree<Monoid> seg;
  SegTree<RevMonoid> seg_r;

  TreeMonoid(HLD &hld) : hld(hld), N(hld.N), seg(hld.N) {
    if (!Monoid::commute) seg_r = SegTree<RevMonoid>(hld.N);
  }

  TreeMonoid(HLD &hld, vc<X> &dat) : hld(hld), N(hld.N) {
    vc<X> seg_raw(N, Monoid::unit());
    if (!edge) {
      FOR(v, N) seg_raw[hld.LID[v]] = dat[v];
    } else {
      FOR(e, N - 1) {
        int v = hld.e_to_v(e);
        seg_raw[hld.LID[v]] = dat[e];
      }
    }
    seg = SegTree<Monoid>(seg_raw);
    if (!Monoid::commute) seg_r = SegTree<RevMonoid>(seg_raw);
  }

  void set(int i, X x) {
    if (edge) i = hld.e_to_v(i);
    i = hld.LID[i];
    seg.set(i, x);
    if (!Monoid::commute) seg_r.set(i, x);
  }

  X prod_path(int u, int v) {
    auto pd = hld.get_path_decomposition(u, v, edge);
    X val = Monoid::unit();
    for (auto &&[a, b]: pd) {
      X x = (a <= b ? seg.prod(a, b + 1)
                    : (Monoid::commute ? seg.prod(b, a + 1)
                                       : seg_r.prod(b, a + 1)));
      val = Monoid::op(val, x);
    }
    return val;
  }

  // uv path 上で prod_path(u, x) が check を満たす最後の x

  // なければ -1

  // https://codeforces.com/contest/1059/problem/E

  // https://codeforces.com/contest/1230/problem/E

  // edge: https://atcoder.jp/contests/tkppc3/tasks/tkppc3_i

  // edge が特に怪しいかも

  template <class F>
  int max_path(F &check, int u, int v) {
    if (edge) return max_path_edge(check, u, v);
    if (!check(prod_path(u, u))) return -1;
    auto pd = hld.get_path_decomposition(u, v, edge);
    X val = Monoid::unit();
    for (auto &&[a, b]: pd) {
      X x = (a <= b ? seg.prod(a, b + 1)
                    : (Monoid::commute ? seg.prod(b, a + 1)
                                       : seg_r.prod(b, a + 1)));
      if (check(Monoid::op(val, x))) {
        val = Monoid::op(val, x);
        u = (hld.V[b]);
        continue;
      }
      auto check_tmp = [&](X x) -> bool { return check(Monoid::op(val, x)); };
      if (a <= b) {
        // 下り

        auto i = seg.max_right(check_tmp, a);
        return (i == a ? u : hld.V[i - 1]);
      } else {
        // 上り

        auto i = (Monoid::commute ? seg.min_left(check_tmp, a + 1)
                                  : seg_r.min_left(check_tmp, a + 1));
        if (i == a + 1) return u;
        return (edge ? hld.parent[hld.V[i]] : hld.V[i]);
      }
    }
    return v;
  }

  X prod_subtree(int u) {
    int l = hld.LID[u], r = hld.RID[u];
    return seg.prod(l + edge, r);
  }

  void debug() {
    print("tree_monoid");
    hld.debug();
    seg.debug();
    seg_r.debug();
  }

private:
  template <class F>
  int max_path_edge(F &check, int u, int v) {
    assert(edge);
    if (!check(Monoid::unit())) return -1;
    int lca = hld.lca(u, v);
    auto pd = hld.get_path_decomposition(u, lca, edge);
    X val = Monoid::unit();

    // climb

    for (auto &&[a, b]: pd) {
      assert(a >= b);
      X x = (Monoid::commute ? seg.prod(b, a + 1) : seg_r.prod(b, a + 1));
      if (check(Monoid::op(val, x))) {
        val = Monoid::op(val, x);
        u = (hld.parent[hld.V[b]]);
        continue;
      }
      auto check_tmp = [&](X x) -> bool { return check(Monoid::op(val, x)); };
      auto i = (Monoid::commute ? seg.min_left(check_tmp, a + 1)
                                : seg_r.min_left(check_tmp, a + 1));
      if (i == a + 1) return u;
      return hld.parent[hld.V[i]];
    }
    // down

    pd = hld.get_path_decomposition(lca, v, edge);
    for (auto &&[a, b]: pd) {
      assert(a <= b);
      X x = seg.prod(a, b + 1);
      if (check(Monoid::op(val, x))) {
        val = Monoid::op(val, x);
        u = (hld.V[b]);
        continue;
      }
      auto check_tmp = [&](X x) -> bool { return check(Monoid::op(val, x)); };
      auto i = seg.max_right(check_tmp, a);
      return (i == a ? u : hld.V[i - 1]);
    }
    return v;
  }
};
#line 2 "alg/monoid_max_idx.hpp"
template <typename T, bool tie_is_left = true>
struct Monoid_Max_Idx {
  using value_type = pair<T, int>;
  using X = value_type;
  static X op(X x, X y) {
    if (x.fi > y.fi) return x;
    if (x.fi < y.fi) return y;
    if (x.se > y.se) swap(x, y);
    return (tie_is_left ? x : y);
  }
  static constexpr X unit() { return {numeric_limits<T>::lowest(), -1}; }
  static constexpr bool commute = true;
};
#line 7 "test/yukicoder/529_two_edge.test.cpp"

void solve() {
  LL(N, M, Q);
  Graph G0(N);
  G0.read_graph(M);
  auto [C, comp] = two_edge_component(G0);

  Graph G(C);
  for (auto&& e: G0.edges) {
    ll a = e.frm, b = e.to;
    if (comp[a] == comp[b]) continue;
    G.add(comp[a], comp[b]);
  }
  G.build();

  using Mono = Monoid_Max_Idx<ll>;

  const ll INF = 1LL << 60;

  HLD hld(G);
  vc<pq<ll>> wts(C);
  vc<pair<ll, int>> dat(C);
  FOR(i, C) dat[i] = {-INF, i};
  TreeMonoid<decltype(hld), Mono> TM(hld, dat);

  FOR(Q) {
    LL(t);
    if (t == 1) {
      LL(v, x);
      --v;
      ll c = comp[v];
      wts[c].push(x);
      TM.set(c, {wts[c].top(), c});
    }
    if (t == 2) {
      LL(a, b);
      --a, --b;
      a = comp[a], b = comp[b];
      auto [x, c] = TM.prod_path(a, b);
      if (x == -INF) {
        print(-1);
      } else {
        print(x);
        wts[c].pop();
        x = (wts[c].empty() ? -INF : wts[c].top());
        TM.set(c, {x, c});
      }
    }
  }
}

signed main() {
  cin.tie(nullptr);
  ios::sync_with_stdio(false);
  cout << setprecision(15);

  ll T = 1;
  // LL(T);
  FOR(_, T) solve();

  return 0;
}
0