結果
| 問題 |
No.1115 二つの数列 / Two Sequences
|
| コンテスト | |
| ユーザー |
keijak
|
| 提出日時 | 2022-06-25 18:14:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,498 bytes |
| コンパイル時間 | 2,283 ms |
| コンパイル使用メモリ | 201,900 KB |
| 最終ジャッジ日時 | 2025-01-30 00:48:51 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 28 WA * 7 |
ソースコード
// #define NDEBUG
#include <bits/stdc++.h>
#define REP_(i, a_, b_, a, b, ...) for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using Int = long long;
using Uint = unsigned long long;
using Real = long double;
template<typename T, typename U>
inline bool chmax(T &a, U b) { return a < b and ((a = b), true); }
template<typename T, typename U>
inline bool chmin(T &a, U b) { return a > b and ((a = b), true); }
template<typename T>
constexpr T kBigVal = std::numeric_limits<T>::max() / 2;
#if __cplusplus < 202002L
template<typename T>
inline int ssize(const T &a) { return (int) a.size(); }
#endif
struct CastInput {
template<typename T>
operator T() const {
T x;
std::cin >> x;
assert(bool(std::cin));
return x;
}
struct Sized {
int n;
template<typename T>
operator T() const {
T xs(n);
for (auto &x: xs) {
std::cin >> x;
assert(bool(std::cin));
}
return xs;
}
};
Sized operator()(int n) const { return {n}; }
} in;
template<typename Container>
std::ostream &out_seq(const Container &seq, const char *sep = " ",
const char *ends = "\n", std::ostream &os = std::cout) {
const auto itl = std::begin(seq), itr = std::end(seq);
for (auto it = itl; it != itr; ++it) {
if (it != itl) os << sep;
os << *it;
}
return os << ends;
}
template<typename T>
std::ostream &out_one(const T &x, char endc) {
if constexpr (std::is_same<T, bool>::value) {
return std::cout << (x ? "Yes" : "No") << endc;
} else {
return std::cout << x << endc;
}
}
template<typename T>
std::ostream &out(const T &x) {
return out_one(x, '\n');
}
template<typename T, typename... Ts>
std::ostream &out(const T &head, Ts... tail) {
return out_one(head, ' '), out(tail...);
}
void init_(bool interactive = false) {
std::ios::sync_with_stdio(false);
if (not interactive) std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(18);
}
void exit_() {
#ifdef MY_DEBUG
std::string _;
assert((std::cin >> _).fail());
#endif
std::cout.flush(), std::cerr.flush(), std::_Exit(0);
}
#ifdef MY_DEBUG
#include "debug_dump.hpp"
#include "backward.hpp"
backward::SignalHandling kSignalHandling;
#else
#define DUMP(...)
#define test_case(...)
#define cerr if(false)cerr
#endif
template<typename Monoid>
struct SegmentTree {
using T = typename Monoid::T;
int n_; // number of valid leaves.
int offset_; // where leaves start
std::vector<T> data_; // data size: 2*offset_
inline int size() const { return n_; }
inline int offset() const { return offset_; }
explicit SegmentTree(int n) : n_(n) {
offset_ = 1;
while (offset_ < n_) offset_ <<= 1;
data_.assign(2 * offset_, Monoid::id());
}
explicit SegmentTree(const std::vector<T> &leaves) : n_(leaves.size()) {
offset_ = 1;
while (offset_ < n_) offset_ <<= 1;
data_.assign(2 * offset_, Monoid::id());
for (int i = 0; i < n_; ++i) {
data_[offset_ + i] = leaves[i];
}
for (int i = offset_ - 1; i > 0; --i) {
data_[i] = Monoid::op(data_[i * 2], data_[i * 2 + 1]);
}
}
// Sets i-th value (0-indexed) to x.
void set(int i, const T &x) {
int k = offset_ + i;
data_[k] = x;
// Update its ancestors.
while (k > 1) {
k >>= 1;
data_[k] = Monoid::op(data_[k * 2], data_[k * 2 + 1]);
}
}
// Queries by [l,r) range (0-indexed, half-open interval).
T fold(int l, int r) const {
l = std::max(l, 0) + offset_;
r = std::min(r, offset_) + offset_;
T vleft = Monoid::id(), vright = Monoid::id();
for (; l < r; l >>= 1, r >>= 1) {
if (l & 1) vleft = Monoid::op(vleft, data_[l++]);
if (r & 1) vright = Monoid::op(data_[--r], vright);
}
return Monoid::op(vleft, vright);
}
T fold_all() const { return data_[1]; }
// Returns i-th value (0-indexed).
T operator[](int i) const { return data_[offset_ + i]; }
std::vector<T> to_vec(int sz = -1) const {
if (sz < 0 or sz > size()) sz = size();
std::vector<T> res(sz);
for (int i = 0; i < sz; ++i) res[i] = (*this)[i];
return res;
}
};
struct SumOp {
using T = long long;
static T op(const T &x, const T &y) {
return x + y;
// alt: saturating_add(x, y)
}
static constexpr T id() { return 0; }
static T invert(const T &x) { return -x; }
};
using namespace std;
// Assumes that P is a permutation of (0, 1, ..., N-1).
int permutation_swaps(const vector<int> &P) {
const int n = (int) P.size();
vector<bool> done(n);
int count = 0;
for (int i = 0; i < n; ++i) {
if (done[i]) continue;
done[i] = true;
int sz = 1;
for (int v = P[i]; not done[v]; v = P[v]) {
done[v] = true;
++sz;
}
count += sz - 1;
}
return count;
}
int inversion_number(const vector<int> &P) {
const int n = ssize(P);
SegmentTree<SumOp> seg(n);
Int inversion_count = 0;
REP(i, n) {
inversion_count += seg.fold(P[i] + 1, n);
seg.set(P[i], seg[P[i]] + 1);
}
return inversion_count;
}
auto solve() {
int n = in;
vector<int> A = in(n), B = in(n);
vector<int> rb(n), C(n);
REP(i, n) {
--A[i];
--B[i];
rb[B[i]] = i;
}
REP(i, n) {
C[i] = rb[A[i]];
}
DUMP(C);
out(inversion_number(C));
}
int main() {
init_();
const int T = 1;//in;
REP(t, T) {
test_case(t, T);
(solve());
}
exit_();
}
keijak