結果
問題 | No.1115 二つの数列 / Two Sequences |
ユーザー | keijak |
提出日時 | 2022-06-25 18:18:29 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,498 bytes |
コンパイル時間 | 2,276 ms |
コンパイル使用メモリ | 210,032 KB |
実行使用メモリ | 6,912 KB |
最終ジャッジ日時 | 2024-11-14 18:07:54 |
合計ジャッジ時間 | 4,183 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 30 ms
6,816 KB |
testcase_04 | WA | - |
testcase_05 | AC | 30 ms
6,816 KB |
testcase_06 | AC | 27 ms
6,816 KB |
testcase_07 | WA | - |
testcase_08 | AC | 4 ms
6,816 KB |
testcase_09 | AC | 18 ms
6,816 KB |
testcase_10 | WA | - |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 2 ms
6,820 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 2 ms
6,816 KB |
testcase_19 | AC | 2 ms
6,820 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 2 ms
6,820 KB |
testcase_22 | AC | 2 ms
6,816 KB |
testcase_23 | AC | 5 ms
6,816 KB |
testcase_24 | AC | 13 ms
6,816 KB |
testcase_25 | AC | 26 ms
6,816 KB |
testcase_26 | AC | 7 ms
6,816 KB |
testcase_27 | AC | 16 ms
6,816 KB |
testcase_28 | AC | 20 ms
6,820 KB |
testcase_29 | AC | 27 ms
6,820 KB |
testcase_30 | WA | - |
testcase_31 | AC | 9 ms
6,816 KB |
testcase_32 | AC | 6 ms
6,816 KB |
testcase_33 | AC | 27 ms
6,820 KB |
testcase_34 | AC | 2 ms
6,820 KB |
testcase_35 | AC | 2 ms
6,816 KB |
testcase_36 | AC | 2 ms
6,816 KB |
testcase_37 | AC | 2 ms
6,816 KB |
testcase_38 | AC | 2 ms
6,816 KB |
testcase_39 | AC | 2 ms
6,820 KB |
ソースコード
// #define NDEBUG #include <bits/stdc++.h> #define REP_(i, a_, b_, a, b, ...) for (int i = (a), END_##i = (b); i < END_##i; ++i) #define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define ALL(x) std::begin(x), std::end(x) using Int = long long; using Uint = unsigned long long; using Real = long double; template<typename T, typename U> inline bool chmax(T &a, U b) { return a < b and ((a = b), true); } template<typename T, typename U> inline bool chmin(T &a, U b) { return a > b and ((a = b), true); } template<typename T> constexpr T kBigVal = std::numeric_limits<T>::max() / 2; #if __cplusplus < 202002L template<typename T> inline int ssize(const T &a) { return (int) a.size(); } #endif struct CastInput { template<typename T> operator T() const { T x; std::cin >> x; assert(bool(std::cin)); return x; } struct Sized { int n; template<typename T> operator T() const { T xs(n); for (auto &x: xs) { std::cin >> x; assert(bool(std::cin)); } return xs; } }; Sized operator()(int n) const { return {n}; } } in; template<typename Container> std::ostream &out_seq(const Container &seq, const char *sep = " ", const char *ends = "\n", std::ostream &os = std::cout) { const auto itl = std::begin(seq), itr = std::end(seq); for (auto it = itl; it != itr; ++it) { if (it != itl) os << sep; os << *it; } return os << ends; } template<typename T> std::ostream &out_one(const T &x, char endc) { if constexpr (std::is_same<T, bool>::value) { return std::cout << (x ? "Yes" : "No") << endc; } else { return std::cout << x << endc; } } template<typename T> std::ostream &out(const T &x) { return out_one(x, '\n'); } template<typename T, typename... Ts> std::ostream &out(const T &head, Ts... tail) { return out_one(head, ' '), out(tail...); } void init_(bool interactive = false) { std::ios::sync_with_stdio(false); if (not interactive) std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(18); } void exit_() { #ifdef MY_DEBUG std::string _; assert((std::cin >> _).fail()); #endif std::cout.flush(), std::cerr.flush(), std::_Exit(0); } #ifdef MY_DEBUG #include "debug_dump.hpp" #include "backward.hpp" backward::SignalHandling kSignalHandling; #else #define DUMP(...) #define test_case(...) #define cerr if(false)cerr #endif template<typename Monoid> struct SegmentTree { using T = typename Monoid::T; int n_; // number of valid leaves. int offset_; // where leaves start std::vector<T> data_; // data size: 2*offset_ inline int size() const { return n_; } inline int offset() const { return offset_; } explicit SegmentTree(int n) : n_(n) { offset_ = 1; while (offset_ < n_) offset_ <<= 1; data_.assign(2 * offset_, Monoid::id()); } explicit SegmentTree(const std::vector<T> &leaves) : n_(leaves.size()) { offset_ = 1; while (offset_ < n_) offset_ <<= 1; data_.assign(2 * offset_, Monoid::id()); for (int i = 0; i < n_; ++i) { data_[offset_ + i] = leaves[i]; } for (int i = offset_ - 1; i > 0; --i) { data_[i] = Monoid::op(data_[i * 2], data_[i * 2 + 1]); } } // Sets i-th value (0-indexed) to x. void set(int i, const T &x) { int k = offset_ + i; data_[k] = x; // Update its ancestors. while (k > 1) { k >>= 1; data_[k] = Monoid::op(data_[k * 2], data_[k * 2 + 1]); } } // Queries by [l,r) range (0-indexed, half-open interval). T fold(int l, int r) const { l = std::max(l, 0) + offset_; r = std::min(r, offset_) + offset_; T vleft = Monoid::id(), vright = Monoid::id(); for (; l < r; l >>= 1, r >>= 1) { if (l & 1) vleft = Monoid::op(vleft, data_[l++]); if (r & 1) vright = Monoid::op(data_[--r], vright); } return Monoid::op(vleft, vright); } T fold_all() const { return data_[1]; } // Returns i-th value (0-indexed). T operator[](int i) const { return data_[offset_ + i]; } std::vector<T> to_vec(int sz = -1) const { if (sz < 0 or sz > size()) sz = size(); std::vector<T> res(sz); for (int i = 0; i < sz; ++i) res[i] = (*this)[i]; return res; } }; struct SumOp { using T = long long; static T op(const T &x, const T &y) { return x + y; // alt: saturating_add(x, y) } static constexpr T id() { return 0; } static T invert(const T &x) { return -x; } }; using namespace std; // Assumes that P is a permutation of (0, 1, ..., N-1). int permutation_swaps(const vector<int> &P) { const int n = (int) P.size(); vector<bool> done(n); int count = 0; for (int i = 0; i < n; ++i) { if (done[i]) continue; done[i] = true; int sz = 1; for (int v = P[i]; not done[v]; v = P[v]) { done[v] = true; ++sz; } count += sz - 1; } return count; } int inversion_number(const vector<int> &P) { const int n = ssize(P); SegmentTree<SumOp> seg(n); Int inversion_count = 0; REP(i, n) { inversion_count += seg.fold(P[i] + 1, n); seg.set(P[i], seg[P[i]] + 1); } return inversion_count; } auto solve() { int n = in; vector<int> A = in(n), B = in(n); vector<int> ra(n), C(n); REP(i, n) { --A[i]; --B[i]; ra[A[i]] = i; } REP(i, n) { C[i] = ra[B[i]]; } DUMP(C); out(inversion_number(C)); } int main() { init_(); const int T = 1;//in; REP(t, T) { test_case(t, T); (solve()); } exit_(); }