結果

問題 No.1115 二つの数列 / Two Sequences
ユーザー keijakkeijak
提出日時 2022-06-25 18:22:59
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 5,498 bytes
コンパイル時間 2,334 ms
コンパイル使用メモリ 208,924 KB
実行使用メモリ 7,040 KB
最終ジャッジ日時 2024-11-14 18:17:19
合計ジャッジ時間 4,263 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 30 ms
6,820 KB
testcase_04 WA -
testcase_05 AC 29 ms
6,816 KB
testcase_06 AC 28 ms
6,816 KB
testcase_07 WA -
testcase_08 AC 3 ms
6,816 KB
testcase_09 AC 19 ms
6,820 KB
testcase_10 WA -
testcase_11 AC 2 ms
6,816 KB
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 2 ms
6,820 KB
testcase_16 AC 2 ms
6,820 KB
testcase_17 AC 2 ms
6,816 KB
testcase_18 AC 2 ms
6,820 KB
testcase_19 AC 2 ms
6,820 KB
testcase_20 AC 2 ms
6,816 KB
testcase_21 AC 2 ms
6,820 KB
testcase_22 AC 2 ms
6,820 KB
testcase_23 AC 4 ms
6,820 KB
testcase_24 AC 13 ms
6,816 KB
testcase_25 AC 25 ms
6,816 KB
testcase_26 AC 8 ms
6,816 KB
testcase_27 AC 15 ms
6,820 KB
testcase_28 AC 21 ms
6,820 KB
testcase_29 AC 28 ms
6,816 KB
testcase_30 WA -
testcase_31 AC 9 ms
6,820 KB
testcase_32 AC 7 ms
6,816 KB
testcase_33 AC 28 ms
6,820 KB
testcase_34 AC 2 ms
6,816 KB
testcase_35 AC 2 ms
6,816 KB
testcase_36 AC 2 ms
6,816 KB
testcase_37 AC 3 ms
6,816 KB
testcase_38 AC 2 ms
6,820 KB
testcase_39 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #define NDEBUG
#include <bits/stdc++.h>

#define REP_(i, a_, b_, a, b, ...) for (int i = (a), END_##i = (b); i < END_##i; ++i)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(x) std::begin(x), std::end(x)
using Int = long long;
using Uint = unsigned long long;
using Real = long double;

template<typename T, typename U>
inline bool chmax(T &a, U b) { return a < b and ((a = b), true); }
template<typename T, typename U>
inline bool chmin(T &a, U b) { return a > b and ((a = b), true); }
template<typename T>
constexpr T kBigVal = std::numeric_limits<T>::max() / 2;
#if __cplusplus < 202002L
template<typename T>
inline int ssize(const T &a) { return (int) a.size(); }
#endif

struct CastInput {
  template<typename T>
  operator T() const {
    T x;
    std::cin >> x;
    assert(bool(std::cin));
    return x;
  }
  struct Sized {
    int n;
    template<typename T>
    operator T() const {
      T xs(n);
      for (auto &x: xs) {
        std::cin >> x;
        assert(bool(std::cin));
      }
      return xs;
    }
  };
  Sized operator()(int n) const { return {n}; }
} in;

template<typename Container>
std::ostream &out_seq(const Container &seq, const char *sep = " ",
                      const char *ends = "\n", std::ostream &os = std::cout) {
  const auto itl = std::begin(seq), itr = std::end(seq);
  for (auto it = itl; it != itr; ++it) {
    if (it != itl) os << sep;
    os << *it;
  }
  return os << ends;
}

template<typename T>
std::ostream &out_one(const T &x, char endc) {
  if constexpr (std::is_same<T, bool>::value) {
    return std::cout << (x ? "Yes" : "No") << endc;
  } else {
    return std::cout << x << endc;
  }
}
template<typename T>
std::ostream &out(const T &x) {
  return out_one(x, '\n');
}
template<typename T, typename... Ts>
std::ostream &out(const T &head, Ts... tail) {
  return out_one(head, ' '), out(tail...);
}

void init_(bool interactive = false) {
  std::ios::sync_with_stdio(false);
  if (not interactive) std::cin.tie(nullptr);
  std::cout << std::fixed << std::setprecision(18);
}

void exit_() {
#ifdef MY_DEBUG
  std::string _;
  assert((std::cin >> _).fail());
#endif
  std::cout.flush(), std::cerr.flush(), std::_Exit(0);
}

#ifdef MY_DEBUG
#include "debug_dump.hpp"
#include "backward.hpp"
backward::SignalHandling kSignalHandling;
#else
#define DUMP(...)
#define test_case(...)
#define cerr if(false)cerr
#endif

template<typename Monoid>
struct SegmentTree {
  using T = typename Monoid::T;

  int n_;                // number of valid leaves.
  int offset_;           // where leaves start
  std::vector<T> data_;  // data size: 2*offset_

  inline int size() const { return n_; }
  inline int offset() const { return offset_; }

  explicit SegmentTree(int n) : n_(n) {
    offset_ = 1;
    while (offset_ < n_) offset_ <<= 1;
    data_.assign(2 * offset_, Monoid::id());
  }

  explicit SegmentTree(const std::vector<T> &leaves) : n_(leaves.size()) {
    offset_ = 1;
    while (offset_ < n_) offset_ <<= 1;
    data_.assign(2 * offset_, Monoid::id());
    for (int i = 0; i < n_; ++i) {
      data_[offset_ + i] = leaves[i];
    }
    for (int i = offset_ - 1; i > 0; --i) {
      data_[i] = Monoid::op(data_[i * 2], data_[i * 2 + 1]);
    }
  }

  // Sets i-th value (0-indexed) to x.
  void set(int i, const T &x) {
    int k = offset_ + i;
    data_[k] = x;
    // Update its ancestors.
    while (k > 1) {
      k >>= 1;
      data_[k] = Monoid::op(data_[k * 2], data_[k * 2 + 1]);
    }
  }

  // Queries by [l,r) range (0-indexed, half-open interval).
  T fold(int l, int r) const {
    l = std::max(l, 0) + offset_;
    r = std::min(r, offset_) + offset_;
    T vleft = Monoid::id(), vright = Monoid::id();
    for (; l < r; l >>= 1, r >>= 1) {
      if (l & 1) vleft = Monoid::op(vleft, data_[l++]);
      if (r & 1) vright = Monoid::op(data_[--r], vright);
    }
    return Monoid::op(vleft, vright);
  }

  T fold_all() const { return data_[1]; }

  // Returns i-th value (0-indexed).
  T operator[](int i) const { return data_[offset_ + i]; }

  std::vector<T> to_vec(int sz = -1) const {
    if (sz < 0 or sz > size()) sz = size();
    std::vector<T> res(sz);
    for (int i = 0; i < sz; ++i) res[i] = (*this)[i];
    return res;
  }
};

struct SumOp {
  using T = long long;
  static T op(const T &x, const T &y) {
    return x + y;
    // alt: saturating_add(x, y)
  }
  static constexpr T id() { return 0; }
  static T invert(const T &x) { return -x; }
};

using namespace std;

// Assumes that P is a permutation of (0, 1, ..., N-1).
int permutation_swaps(const vector<int> &P) {
  const int n = (int) P.size();
  vector<bool> done(n);
  int count = 0;
  for (int i = 0; i < n; ++i) {
    if (done[i]) continue;
    done[i] = true;
    int sz = 1;
    for (int v = P[i]; not done[v]; v = P[v]) {
      done[v] = true;
      ++sz;
    }
    count += sz - 1;
  }
  return count;
}

int inversion_number(const vector<int> &P) {
  const int n = ssize(P);
  SegmentTree<SumOp> seg(n);
  Int inversion_count = 0;
  REP(i, n) {
    inversion_count += seg.fold(P[i] + 1, n);
    seg.set(P[i], seg[P[i]] + 1);
  }
  return inversion_count;
}

auto solve() {
  int n = in;
  vector<int> A = in(n), B = in(n);
  vector<int> ra(n), C(n);
  REP(i, n) {
    --A[i];
    --B[i];
    ra[A[i]] = i;
  }
  REP(i, n) {
    C[i] = ra[B[i]];
  }
  DUMP(C);
  out(inversion_number(C));
}

int main() {
  init_();
  const int T = 1;//in;
  REP(t, T) {
    test_case(t, T);
    (solve());
  }
  exit_();
}
0