結果

問題 No.1975 Zigzag Sequence
ユーザー Chanyuh
提出日時 2022-06-27 22:46:35
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 144 ms / 2,000 ms
コード長 7,289 bytes
コンパイル時間 1,627 ms
コンパイル使用メモリ 135,968 KB
最終ジャッジ日時 2025-01-30 01:07:52
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <ciso646>
#include <cmath>
#include <complex>
#include <cstdio>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define rep(i, n) for (int i = 0; i < n; i++)
#define per(i, n) for (int i = n - 1; i >= 0; i--)
#define Rep(i, sta, n) for (int i = sta; i < n; i++)
#define Per(i, sta, n) for (int i = n - 1; i >= sta; i--)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[8] = {1, -1, 0, 0, 1, 1, -1, -1};
int dy[8] = {0, 0, 1, -1, 1, -1, 1, -1};
template <class T>
using max_heap = priority_queue<T>;
template <class T>
using min_heap = priority_queue<T, vector<T>, greater<>>;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <int mod>
struct ModInt {
long long x;
static constexpr int MOD = mod;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
explicit operator int() const { return x; }
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator%(const ModInt &p) const { return ModInt(0); }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
ModInt power(long long n) const {
ModInt ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
ModInt power(const ModInt p) const { return ((ModInt)x).power(p.x); }
friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using modint = ModInt<mod>;
template <class S, S (*op)(S, S), S (*e)()>
struct SegmentTree {
public:
SegmentTree() : SegmentTree(0) {}
SegmentTree(int n) : SegmentTree(std::vector<S>(n, e())) {}
SegmentTree(const std::vector<S> &v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set_val(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S query(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_query() { return d[1]; }
template <bool (*f)(S)>
int max_right(int l) { // f(op([l,r)))==truer
return max_right(l, [](S x) { return f(x); });
}
template <class F>
int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)>
int min_left(int r) { // f(op([l,r)))==truel
return min_left(r, [](S x) { return f(x); });
}
template <class F>
int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
};
template <typename T>
struct Compress {
vector<T> V;
Compress() { V.clear(); }
Compress(vector<T> &V) : V(V) {}
void add(T x) { V.push_back(x); }
int build() {
sort(V.begin(), V.end());
V.erase(unique(V.begin(), V.end()), V.end());
return V.size();
}
int get(T x) { // get the index of the minimum element which is greater than
// x
return lower_bound(V.begin(), V.end(), x) - V.begin();
}
pair<int, int> section(T l, T r) { // get the range of indexes of [l,r)
int l_ = get(l), r_ = get(r);
return pair<int, int>(l_, r_);
}
T &operator[](int i) { return V[i]; };
};
int n, a[200010];
modint pow2[200010];
vector<int> v[200010];
modint F(modint a, modint b) { return a + b; }
modint e() { return 0; }
void solve() {
cin >> n;
Compress<int> comp;
rep(i, n) {
cin >> a[i];
comp.add(a[i]);
}
pow2[0] = 1;
rep(i, n) pow2[i + 1] = pow2[i] * 2;
int m = comp.build();
rep(i, n) v[comp.get(a[i])].push_back(i);
SegmentTree<modint, F, e> seg1(n), seg2(n), seg3(n), seg4(n);
modint ans = 0;
rep(i, m) {
for (int t : v[i]) {
ans += seg1.query(0, t) * seg2.query(t + 1, n);
}
for (int t : v[i]) {
seg1.set_val(t, pow2[t]);
seg2.set_val(t, pow2[n - 1 - t]);
}
}
per(i, m) {
for (int t : v[i]) {
ans += seg3.query(0, t) * seg4.query(t + 1, n);
}
for (int t : v[i]) {
seg3.set_val(t, pow2[t]);
seg4.set_val(t, pow2[n - 1 - t]);
}
}
cout << ans << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(50);
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0