結果
問題 | No.1975 Zigzag Sequence |
ユーザー |
![]() |
提出日時 | 2022-06-27 22:46:35 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 144 ms / 2,000 ms |
コード長 | 7,289 bytes |
コンパイル時間 | 1,627 ms |
コンパイル使用メモリ | 135,968 KB |
最終ジャッジ日時 | 2025-01-30 01:07:52 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 33 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <ciso646>#include <cmath>#include <complex>#include <cstdio>#include <functional>#include <iomanip>#include <iostream>#include <map>#include <queue>#include <random>#include <set>#include <stack>#include <string>#include <tuple>#include <unordered_map>#include <utility>#include <vector>using namespace std;typedef long long ll;const ll mod = 1000000007;const ll INF = (ll)1000000007 * 1000000007;typedef pair<int, int> P;#define rep(i, n) for (int i = 0; i < n; i++)#define per(i, n) for (int i = n - 1; i >= 0; i--)#define Rep(i, sta, n) for (int i = sta; i < n; i++)#define Per(i, sta, n) for (int i = n - 1; i >= sta; i--)typedef long double ld;const ld eps = 1e-8;const ld pi = acos(-1.0);typedef pair<ll, ll> LP;int dx[8] = {1, -1, 0, 0, 1, 1, -1, -1};int dy[8] = {0, 0, 1, -1, 1, -1, 1, -1};template <class T>using max_heap = priority_queue<T>;template <class T>using min_heap = priority_queue<T, vector<T>, greater<>>;template <class T>bool chmax(T &a, const T &b) {if (a < b) {a = b;return 1;}return 0;}template <class T>bool chmin(T &a, const T &b) {if (b < a) {a = b;return 1;}return 0;}template <int mod>struct ModInt {long long x;static constexpr int MOD = mod;ModInt() : x(0) {}ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}explicit operator int() const { return x; }ModInt &operator+=(const ModInt &p) {if ((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int)(1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }ModInt operator%(const ModInt &p) const { return ModInt(0); }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while (b > 0) {t = a / b;a -= t * b;swap(a, b);u -= t * v;swap(u, v);}return ModInt(u);}ModInt power(long long n) const {ModInt ret(1), mul(x);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}ModInt power(const ModInt p) const { return ((ModInt)x).power(p.x); }friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {return os << p.x;}friend istream &operator>>(istream &is, ModInt<mod> &a) {long long x;is >> x;a = ModInt<mod>(x);return (is);}};using modint = ModInt<mod>;template <class S, S (*op)(S, S), S (*e)()>struct SegmentTree {public:SegmentTree() : SegmentTree(0) {}SegmentTree(int n) : SegmentTree(std::vector<S>(n, e())) {}SegmentTree(const std::vector<S> &v) : _n(int(v.size())) {log = ceil_pow2(_n);size = 1 << log;d = std::vector<S>(2 * size, e());for (int i = 0; i < _n; i++) d[size + i] = v[i];for (int i = size - 1; i >= 1; i--) {update(i);}}void set_val(int p, S x) {assert(0 <= p && p < _n);p += size;d[p] = x;for (int i = 1; i <= log; i++) update(p >> i);}S get(int p) {assert(0 <= p && p < _n);return d[p + size];}S query(int l, int r) {assert(0 <= l && l <= r && r <= _n);S sml = e(), smr = e();l += size;r += size;while (l < r) {if (l & 1) sml = op(sml, d[l++]);if (r & 1) smr = op(d[--r], smr);l >>= 1;r >>= 1;}return op(sml, smr);}S all_query() { return d[1]; }template <bool (*f)(S)>int max_right(int l) { // f(op([l,r)))==trueを満たす最大のrreturn max_right(l, [](S x) { return f(x); });}template <class F>int max_right(int l, F f) {assert(0 <= l && l <= _n);assert(f(e()));if (l == _n) return _n;l += size;S sm = e();do {while (l % 2 == 0) l >>= 1;if (!f(op(sm, d[l]))) {while (l < size) {l = (2 * l);if (f(op(sm, d[l]))) {sm = op(sm, d[l]);l++;}}return l - size;}sm = op(sm, d[l]);l++;} while ((l & -l) != l);return _n;}template <bool (*f)(S)>int min_left(int r) { // f(op([l,r)))==trueを満たす最小のlreturn min_left(r, [](S x) { return f(x); });}template <class F>int min_left(int r, F f) {assert(0 <= r && r <= _n);assert(f(e()));if (r == 0) return 0;r += size;S sm = e();do {r--;while (r > 1 && (r % 2)) r >>= 1;if (!f(op(d[r], sm))) {while (r < size) {r = (2 * r + 1);if (f(op(d[r], sm))) {sm = op(d[r], sm);r--;}}return r + 1 - size;}sm = op(d[r], sm);} while ((r & -r) != r);return 0;}private:int _n, size, log;std::vector<S> d;void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }int ceil_pow2(int n) {int x = 0;while ((1U << x) < (unsigned int)(n)) x++;return x;}};template <typename T>struct Compress {vector<T> V;Compress() { V.clear(); }Compress(vector<T> &V) : V(V) {}void add(T x) { V.push_back(x); }int build() {sort(V.begin(), V.end());V.erase(unique(V.begin(), V.end()), V.end());return V.size();}int get(T x) { // get the index of the minimum element which is greater than// xreturn lower_bound(V.begin(), V.end(), x) - V.begin();}pair<int, int> section(T l, T r) { // get the range of indexes of [l,r)int l_ = get(l), r_ = get(r);return pair<int, int>(l_, r_);}T &operator[](int i) { return V[i]; };};int n, a[200010];modint pow2[200010];vector<int> v[200010];modint F(modint a, modint b) { return a + b; }modint e() { return 0; }void solve() {cin >> n;Compress<int> comp;rep(i, n) {cin >> a[i];comp.add(a[i]);}pow2[0] = 1;rep(i, n) pow2[i + 1] = pow2[i] * 2;int m = comp.build();rep(i, n) v[comp.get(a[i])].push_back(i);SegmentTree<modint, F, e> seg1(n), seg2(n), seg3(n), seg4(n);modint ans = 0;rep(i, m) {for (int t : v[i]) {ans += seg1.query(0, t) * seg2.query(t + 1, n);}for (int t : v[i]) {seg1.set_val(t, pow2[t]);seg2.set_val(t, pow2[n - 1 - t]);}}per(i, m) {for (int t : v[i]) {ans += seg3.query(0, t) * seg4.query(t + 1, n);}for (int t : v[i]) {seg3.set_val(t, pow2[t]);seg4.set_val(t, pow2[n - 1 - t]);}}cout << ans << endl;}int main() {ios::sync_with_stdio(false);cin.tie(0);cout << fixed << setprecision(50);solve();}