結果

問題 No.811 約数の個数の最大化
ユーザー McGregorshMcGregorsh
提出日時 2022-07-04 20:09:30
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 538 ms / 2,000 ms
コード長 4,470 bytes
コンパイル時間 291 ms
コンパイル使用メモリ 82,352 KB
実行使用メモリ 96,544 KB
最終ジャッジ日時 2024-12-14 12:43:38
合計ジャッジ時間 6,423 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 12
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

######
def prime_factorize(n: int) -> list:
return_list = []
while n % 2 == 0:
return_list.append(2)
n //= 2
f = 3
while f * f <= n:
if n % f == 0:
return_list.append(f)
n //= f
else:
f += 2
if n != 1:
return_list.append(n)
return return_list
######
import math
def is_prime(n):
sqrt_n = math.ceil(math.sqrt(n))
for i in range(2, sqrt_n):
if n % i == 0:
return False
return True
###N###
import math
def sieve_of_eratosthenes(n):
prime = [True for i in range(n+1)]
prime[0] = False
prime[1] = False
sqrt_n = math.ceil(math.sqrt(n))
for i in range(2, sqrt_n+1):
if prime[i]:
for j in range(2*i, n+1, i):
prime[j] = False
return prime
###NK###
import math
def segment_sieve(a, b):
sqrt_b = math.ceil(math.sqrt(b))
prime_small = [True for i in range(sqrt_b)]
prime = [True for i in range(b-a+1)]
for i in range(2, sqrt_b):
if prime_small[i]:
for j in range(2*i, sqrt_b, i):
prime_small[j] = False
for j in range((a+i-1)//i*i, b+1, i):
#print('j: ', j)
prime[j-a] = False
return prime
###n10###
def base_10(num_n,n):
num_10 = 0
for s in str(num_n):
num_10 *= n
num_10 += int(s)
return num_10
###10n###
def base_n(num_10,n):
str_n = ''
while num_10:
if num_10%n>=10:
return -1
str_n += str(num_10%n)
num_10 //= n
return int(str_n[::-1])
######
from functools import reduce
#
def gcd_list(num_list: list) -> int:
return reduce(gcd, num_list)
#
def lcm_base(x: int, y: int) -> int:
return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
return reduce(lcm_base, num_list, 1)
######
def make_divisors(n):
lower_divisors, upper_divisors = [], []
i = 1
while i * i <= n:
if n % i == 0:
lower_divisors.append(i)
if i != n // i:
upper_divisors.append(n//i)
i += 1
return lower_divisors + upper_divisors[::-1]
######
def nPr(n, r):
npr = 1
for i in range(n, n-r, -1):
npr *= i
return npr
######
def nCr(n, r):
factr = 1
r = min(r, n - r)
for i in range(r, 1, -1):
factr *= i
return nPr(n, r)/factr
import sys, re
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
return d
def rotate(table):
n_fild = []
for x in zip(*table[::-1]):
n_fild.append(x)
return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353
def main():
n, k = i_map()
nums = prime_factorize(n)
count = Counter(nums)
ans = INF
base = 0
for i in range(n-1, 0, -1):
lines = prime_factorize(i)
score = 0
new_nums = deepcopy(count)
for j in range(len(lines)):
if new_nums[lines[j]] > 0:
score += 1
new_nums[lines[j]] -= 1
if score >= k:
total = 1
cou_line = Counter(lines)
for key, value in cou_line.items():
total *= (value+1)
base = max(base, total)
if base == total:
ans = min(ans, i)
print(ans)
if __name__ == '__main__':
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0