結果

問題 No.843 Triple Primes
ユーザー McGregorshMcGregorsh
提出日時 2022-07-04 21:32:35
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 521 ms / 2,000 ms
コード長 3,806 bytes
コンパイル時間 490 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 185,912 KB
最終ジャッジ日時 2024-12-14 15:07:38
合計ジャッジ時間 16,791 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 156 ms
88,960 KB
testcase_01 AC 521 ms
185,892 KB
testcase_02 AC 180 ms
105,444 KB
testcase_03 AC 175 ms
102,016 KB
testcase_04 AC 193 ms
109,748 KB
testcase_05 AC 177 ms
102,212 KB
testcase_06 AC 186 ms
109,872 KB
testcase_07 AC 441 ms
184,560 KB
testcase_08 AC 464 ms
184,776 KB
testcase_09 AC 501 ms
185,856 KB
testcase_10 AC 448 ms
184,832 KB
testcase_11 AC 459 ms
185,340 KB
testcase_12 AC 488 ms
185,556 KB
testcase_13 AC 475 ms
185,520 KB
testcase_14 AC 474 ms
185,112 KB
testcase_15 AC 439 ms
184,284 KB
testcase_16 AC 450 ms
184,628 KB
testcase_17 AC 150 ms
89,352 KB
testcase_18 AC 156 ms
89,252 KB
testcase_19 AC 154 ms
89,372 KB
testcase_20 AC 291 ms
155,760 KB
testcase_21 AC 241 ms
138,692 KB
testcase_22 AC 380 ms
165,120 KB
testcase_23 AC 385 ms
173,816 KB
testcase_24 AC 297 ms
155,704 KB
testcase_25 AC 277 ms
149,020 KB
testcase_26 AC 499 ms
185,872 KB
testcase_27 AC 216 ms
128,520 KB
testcase_28 AC 485 ms
185,500 KB
testcase_29 AC 298 ms
156,092 KB
testcase_30 AC 480 ms
185,900 KB
testcase_31 AC 224 ms
133,312 KB
testcase_32 AC 205 ms
124,532 KB
testcase_33 AC 309 ms
156,012 KB
testcase_34 AC 362 ms
164,644 KB
testcase_35 AC 493 ms
185,912 KB
testcase_36 AC 271 ms
148,920 KB
testcase_37 AC 424 ms
174,992 KB
testcase_38 AC 398 ms
173,940 KB
testcase_39 AC 479 ms
185,616 KB
testcase_40 AC 147 ms
88,840 KB
testcase_41 AC 149 ms
88,940 KB
testcase_42 AC 460 ms
184,860 KB
testcase_43 AC 463 ms
185,316 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


def main():
   
   n = int(input())
   nu = sieve_of_eratosthenes(n)
   nums = defaultdict(int)
   suuzi = []
   for i in range(len(nu)):
   	  if nu[i]:
   	  	  nums[i] += 1
   	  	  suuzi.append(i)
   
   ans = 0
   for i in range(len(nums)):
   	  now = suuzi[i]
   	  if now ** 2 > 10**6:
   	  	  break
   	  for j in range(len(suuzi)):
   	  	  #print(now**2, suuzi[j])
   	  	  score = now ** 2 - suuzi[j]
   	  	  #print(score)
   	  	  if nums[score] == 1:
   	  	  	  ans += 1
   print(ans)
   
if __name__ == '__main__':
    main()


0