結果

問題 No.843 Triple Primes
ユーザー McGregorshMcGregorsh
提出日時 2022-07-04 21:32:35
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 423 ms / 2,000 ms
コード長 3,806 bytes
コンパイル時間 320 ms
コンパイル使用メモリ 82,232 KB
実行使用メモリ 186,212 KB
最終ジャッジ日時 2024-05-08 11:27:00
合計ジャッジ時間 14,322 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 130 ms
89,484 KB
testcase_01 AC 423 ms
186,212 KB
testcase_02 AC 154 ms
105,208 KB
testcase_03 AC 157 ms
102,256 KB
testcase_04 AC 160 ms
109,916 KB
testcase_05 AC 155 ms
101,840 KB
testcase_06 AC 161 ms
109,980 KB
testcase_07 AC 371 ms
184,592 KB
testcase_08 AC 379 ms
185,192 KB
testcase_09 AC 412 ms
185,916 KB
testcase_10 AC 373 ms
184,464 KB
testcase_11 AC 390 ms
185,468 KB
testcase_12 AC 410 ms
185,896 KB
testcase_13 AC 400 ms
185,684 KB
testcase_14 AC 398 ms
185,632 KB
testcase_15 AC 370 ms
184,712 KB
testcase_16 AC 371 ms
184,696 KB
testcase_17 AC 134 ms
88,940 KB
testcase_18 AC 128 ms
89,424 KB
testcase_19 AC 132 ms
89,312 KB
testcase_20 AC 253 ms
155,908 KB
testcase_21 AC 213 ms
138,908 KB
testcase_22 AC 335 ms
165,140 KB
testcase_23 AC 327 ms
173,860 KB
testcase_24 AC 248 ms
156,040 KB
testcase_25 AC 236 ms
149,064 KB
testcase_26 AC 414 ms
185,980 KB
testcase_27 AC 188 ms
128,512 KB
testcase_28 AC 400 ms
185,488 KB
testcase_29 AC 264 ms
156,076 KB
testcase_30 AC 401 ms
185,996 KB
testcase_31 AC 198 ms
133,176 KB
testcase_32 AC 183 ms
124,928 KB
testcase_33 AC 262 ms
156,140 KB
testcase_34 AC 313 ms
164,744 KB
testcase_35 AC 413 ms
186,072 KB
testcase_36 AC 234 ms
148,960 KB
testcase_37 AC 364 ms
175,068 KB
testcase_38 AC 338 ms
174,088 KB
testcase_39 AC 402 ms
185,748 KB
testcase_40 AC 129 ms
89,200 KB
testcase_41 AC 131 ms
89,376 KB
testcase_42 AC 373 ms
185,176 KB
testcase_43 AC 387 ms
185,536 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


def main():
   
   n = int(input())
   nu = sieve_of_eratosthenes(n)
   nums = defaultdict(int)
   suuzi = []
   for i in range(len(nu)):
   	  if nu[i]:
   	  	  nums[i] += 1
   	  	  suuzi.append(i)
   
   ans = 0
   for i in range(len(nums)):
   	  now = suuzi[i]
   	  if now ** 2 > 10**6:
   	  	  break
   	  for j in range(len(suuzi)):
   	  	  #print(now**2, suuzi[j])
   	  	  score = now ** 2 - suuzi[j]
   	  	  #print(score)
   	  	  if nums[score] == 1:
   	  	  	  ans += 1
   print(ans)
   
if __name__ == '__main__':
    main()


0