結果

問題 No.847 Divisors of Power
ユーザー McGregorshMcGregorsh
提出日時 2022-07-05 14:12:01
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 198 ms / 2,000 ms
コード長 4,582 bytes
コンパイル時間 583 ms
コンパイル使用メモリ 81,920 KB
実行使用メモリ 91,136 KB
最終ジャッジ日時 2024-05-09 08:29:41
合計ジャッジ時間 5,792 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 131 ms
89,856 KB
testcase_01 AC 137 ms
89,856 KB
testcase_02 AC 133 ms
89,856 KB
testcase_03 AC 127 ms
89,600 KB
testcase_04 AC 127 ms
89,472 KB
testcase_05 AC 125 ms
89,856 KB
testcase_06 AC 128 ms
89,984 KB
testcase_07 AC 124 ms
89,984 KB
testcase_08 AC 135 ms
89,984 KB
testcase_09 AC 133 ms
89,856 KB
testcase_10 AC 126 ms
89,600 KB
testcase_11 AC 128 ms
89,856 KB
testcase_12 AC 126 ms
89,600 KB
testcase_13 AC 130 ms
89,728 KB
testcase_14 AC 133 ms
89,856 KB
testcase_15 AC 198 ms
90,880 KB
testcase_16 AC 129 ms
89,600 KB
testcase_17 AC 127 ms
89,472 KB
testcase_18 AC 124 ms
89,600 KB
testcase_19 AC 139 ms
91,136 KB
testcase_20 AC 131 ms
89,856 KB
testcase_21 AC 163 ms
90,496 KB
testcase_22 AC 131 ms
89,600 KB
testcase_23 AC 126 ms
89,600 KB
testcase_24 AC 179 ms
91,008 KB
testcase_25 AC 125 ms
89,856 KB
testcase_26 AC 128 ms
89,728 KB
testcase_27 AC 126 ms
89,600 KB
testcase_28 AC 132 ms
89,856 KB
testcase_29 AC 127 ms
89,600 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###素因数分解###

def prime_factorize(n: int) -> list:
   return_list = []
   while n % 2 == 0:
   	  return_list.append(2)
   	  n //= 2
   f = 3
   while f * f <= n:
   	  if n % f == 0:
   	  	  return_list.append(f)
   	  	  n //= f
   	  else:
   	  	  f += 2
   if n != 1:
   	  return_list.append(n)
   return return_list


###ある数が素数かどうかの判定###

import math

def is_prime(n):
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n):
	  	  if n % i == 0:
	  	  	  return False
	  return True


###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


###関数コピーしたか?###
def main():
   
   n, k, m = i_map()
   nums = prime_factorize(n)
   count = Counter(nums)
   numbers = set()
   for key, value in count.items():
   	  count[key] *= k
   	  numbers.add(key)
   len_numbers = len(numbers)
   numbers = list(numbers)
   
   def dfs(score, start, gree):
   	  if score > m:
   	  	  return 0
   	  
   	  ret = 0
   	  if score <= m:
   	  	  ret += 1
   	  
   	  for i in range(start, len_numbers):
   	  	  num = numbers[i]
   	  	  if score * num > m:
   	  	  	  break
   	  	  if count[num] == 0:
   	  	  	  continue
   	  	  count[num] -= 1
   	  	  ret += dfs(score * num, i, count)
   	  	  count[num] += 1
   	  
   	  return ret
   
   
   print(dfs(1, 0, count))
   
if __name__ == '__main__':
    main()

0