結果
問題 | No.847 Divisors of Power |
ユーザー | McGregorsh |
提出日時 | 2022-07-05 14:12:01 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 195 ms / 2,000 ms |
コード長 | 4,582 bytes |
コンパイル時間 | 454 ms |
コンパイル使用メモリ | 82,424 KB |
実行使用メモリ | 90,976 KB |
最終ジャッジ日時 | 2024-12-15 19:42:21 |
合計ジャッジ時間 | 5,828 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 119 ms
89,596 KB |
testcase_01 | AC | 130 ms
89,736 KB |
testcase_02 | AC | 123 ms
89,816 KB |
testcase_03 | AC | 123 ms
89,524 KB |
testcase_04 | AC | 131 ms
89,656 KB |
testcase_05 | AC | 126 ms
89,744 KB |
testcase_06 | AC | 124 ms
89,936 KB |
testcase_07 | AC | 119 ms
89,680 KB |
testcase_08 | AC | 128 ms
89,588 KB |
testcase_09 | AC | 123 ms
89,672 KB |
testcase_10 | AC | 126 ms
89,432 KB |
testcase_11 | AC | 124 ms
89,496 KB |
testcase_12 | AC | 124 ms
89,716 KB |
testcase_13 | AC | 123 ms
89,632 KB |
testcase_14 | AC | 123 ms
89,828 KB |
testcase_15 | AC | 195 ms
90,976 KB |
testcase_16 | AC | 126 ms
89,924 KB |
testcase_17 | AC | 124 ms
89,576 KB |
testcase_18 | AC | 126 ms
89,580 KB |
testcase_19 | AC | 146 ms
90,664 KB |
testcase_20 | AC | 127 ms
89,760 KB |
testcase_21 | AC | 164 ms
90,616 KB |
testcase_22 | AC | 124 ms
89,804 KB |
testcase_23 | AC | 128 ms
89,656 KB |
testcase_24 | AC | 185 ms
90,848 KB |
testcase_25 | AC | 125 ms
89,748 KB |
testcase_26 | AC | 123 ms
89,304 KB |
testcase_27 | AC | 126 ms
89,744 KB |
testcase_28 | AC | 128 ms
89,580 KB |
testcase_29 | AC | 128 ms
89,608 KB |
ソースコード
###素因数分解### def prime_factorize(n: int) -> list: return_list = [] while n % 2 == 0: return_list.append(2) n //= 2 f = 3 while f * f <= n: if n % f == 0: return_list.append(f) n //= f else: f += 2 if n != 1: return_list.append(n) return return_list ###ある数が素数かどうかの判定### import math def is_prime(n): sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n): if n % i == 0: return False return True ###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n+1): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr import sys, re from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d def rotate(table): n_fild = [] for x in zip(*table[::-1]): n_fild.append(x) return n_fild sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 ###関数コピーしたか?### def main(): n, k, m = i_map() nums = prime_factorize(n) count = Counter(nums) numbers = set() for key, value in count.items(): count[key] *= k numbers.add(key) len_numbers = len(numbers) numbers = list(numbers) def dfs(score, start, gree): if score > m: return 0 ret = 0 if score <= m: ret += 1 for i in range(start, len_numbers): num = numbers[i] if score * num > m: break if count[num] == 0: continue count[num] -= 1 ret += dfs(score * num, i, count) count[num] += 1 return ret print(dfs(1, 0, count)) if __name__ == '__main__': main()