結果
問題 | No.847 Divisors of Power |
ユーザー | McGregorsh |
提出日時 | 2022-07-05 14:12:01 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 198 ms / 2,000 ms |
コード長 | 4,582 bytes |
コンパイル時間 | 583 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 91,136 KB |
最終ジャッジ日時 | 2024-05-09 08:29:41 |
合計ジャッジ時間 | 5,792 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 131 ms
89,856 KB |
testcase_01 | AC | 137 ms
89,856 KB |
testcase_02 | AC | 133 ms
89,856 KB |
testcase_03 | AC | 127 ms
89,600 KB |
testcase_04 | AC | 127 ms
89,472 KB |
testcase_05 | AC | 125 ms
89,856 KB |
testcase_06 | AC | 128 ms
89,984 KB |
testcase_07 | AC | 124 ms
89,984 KB |
testcase_08 | AC | 135 ms
89,984 KB |
testcase_09 | AC | 133 ms
89,856 KB |
testcase_10 | AC | 126 ms
89,600 KB |
testcase_11 | AC | 128 ms
89,856 KB |
testcase_12 | AC | 126 ms
89,600 KB |
testcase_13 | AC | 130 ms
89,728 KB |
testcase_14 | AC | 133 ms
89,856 KB |
testcase_15 | AC | 198 ms
90,880 KB |
testcase_16 | AC | 129 ms
89,600 KB |
testcase_17 | AC | 127 ms
89,472 KB |
testcase_18 | AC | 124 ms
89,600 KB |
testcase_19 | AC | 139 ms
91,136 KB |
testcase_20 | AC | 131 ms
89,856 KB |
testcase_21 | AC | 163 ms
90,496 KB |
testcase_22 | AC | 131 ms
89,600 KB |
testcase_23 | AC | 126 ms
89,600 KB |
testcase_24 | AC | 179 ms
91,008 KB |
testcase_25 | AC | 125 ms
89,856 KB |
testcase_26 | AC | 128 ms
89,728 KB |
testcase_27 | AC | 126 ms
89,600 KB |
testcase_28 | AC | 132 ms
89,856 KB |
testcase_29 | AC | 127 ms
89,600 KB |
ソースコード
###素因数分解### def prime_factorize(n: int) -> list: return_list = [] while n % 2 == 0: return_list.append(2) n //= 2 f = 3 while f * f <= n: if n % f == 0: return_list.append(f) n //= f else: f += 2 if n != 1: return_list.append(n) return return_list ###ある数が素数かどうかの判定### import math def is_prime(n): sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n): if n % i == 0: return False return True ###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n+1): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr import sys, re from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d def rotate(table): n_fild = [] for x in zip(*table[::-1]): n_fild.append(x) return n_fild sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 ###関数コピーしたか?### def main(): n, k, m = i_map() nums = prime_factorize(n) count = Counter(nums) numbers = set() for key, value in count.items(): count[key] *= k numbers.add(key) len_numbers = len(numbers) numbers = list(numbers) def dfs(score, start, gree): if score > m: return 0 ret = 0 if score <= m: ret += 1 for i in range(start, len_numbers): num = numbers[i] if score * num > m: break if count[num] == 0: continue count[num] -= 1 ret += dfs(score * num, i, count) count[num] += 1 return ret print(dfs(1, 0, count)) if __name__ == '__main__': main()