結果
| 問題 |
No.1172 Add Recursive Sequence
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2022-07-06 06:35:32 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,401 ms / 4,000 ms |
| コード長 | 19,286 bytes |
| コンパイル時間 | 478 ms |
| コンパイル使用メモリ | 82,580 KB |
| 実行使用メモリ | 96,704 KB |
| 最終ジャッジ日時 | 2024-12-18 00:12:58 |
| 合計ジャッジ時間 | 6,036 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 16 |
ソースコード
import sys
readline=sys.stdin.readline
import math
class Polynomial:
def __init__(self,polynomial,max_degree=-1,eps=0,mod=0):
self.max_degree=max_degree
if self.max_degree!=-1 and len(polynomial)>self.max_degree+1:
self.polynomial=polynomial[:self.max_degree+1]
else:
self.polynomial=polynomial
self.mod=mod
self.eps=eps
def __eq__(self,other):
if type(other)!=Polynomial:
return False
if len(self.polynomial)!=len(other.polynomial):
return False
for i in range(len(self.polynomial)):
if self.eps<abs(self.polynomial[i]-other.polynomial[i]):
return False
return True
def __ne__(self,other):
if type(other)!=Polynomial:
return True
if len(self.polynomial)!=len(other.polynomial):
return True
for i in range(len(self.polynomial)):
if self.eps<abs(self.polynomial[i]-other.polynomial[i]):
return True
return False
def __add__(self,other):
if type(other)==Polynomial:
summ=[0]*max(len(self.polynomial),len(other.polynomial))
for i in range(len(self.polynomial)):
summ[i]+=self.polynomial[i]
for i in range(len(other.polynomial)):
summ[i]+=other.polynomial[i]
if self.mod:
for i in range(len(summ)):
summ[i]%=self.mod
else:
summ=[x for x in self.polynomial] if self.polynomial else [0]
summ[0]+=other
if self.mod:
summ[0]%=self.mod
while summ and abs(summ[-1])<=self.eps:
summ.pop()
summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return summ
def __sub__(self,other):
if type(other)==Polynomial:
diff=[0]*max(len(self.polynomial),len(other.polynomial))
for i in range(len(self.polynomial)):
diff[i]+=self.polynomial[i]
for i in range(len(other.polynomial)):
diff[i]-=other.polynomial[i]
if self.mod:
for i in range(len(diff)):
diff[i]%=self.mod
else:
diff=[x for x in self.polynomial] if self.polynomial else [0]
diff[0]-=other
if self.mod:
diff[0]%=self.mod
while diff and abs(diff[-1])<=self.eps:
diff.pop()
diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return diff
def __mul__(self,other):
if type(other)==Polynomial:
if self.max_degree==-1:
prod=[0]*(len(self.polynomial)+len(other.polynomial)-1)
for i in range(len(self.polynomial)):
for j in range(len(other.polynomial)):
prod[i+j]+=self.polynomial[i]*other.polynomial[j]
else:
prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1)
for i in range(len(self.polynomial)):
for j in range(min(len(other.polynomial),self.max_degree+1-i)):
prod[i+j]+=self.polynomial[i]*other.polynomial[j]
if self.mod:
for i in range(len(prod)):
prod[i]%=self.mod
else:
if self.mod:
prod=[x*other%self.mod for x in self.polynomial]
else:
prod=[x*other for x in self.polynomial]
while prod and abs(prod[-1])<=self.eps:
prod.pop()
prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return prod
def __matmul__(self,other):
assert type(other)==Polynomial
if self.mod:
prod=NTT(self.polynomial,other.polynomial)
else:
prod=FFT(self.polynomial,other.polynomial)
if self.max_degree!=-1 and len(prod)>self.max_degree+1:
prod=prod[:self.max_degree+1]
while prod and abs(prod[-1])<=self.eps:
prod.pop()
prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return prod
def __truediv__(self,other):
if type(other)==Polynomial:
assert other.polynomial
for n in range(len(other.polynomial)):
if self.eps<abs(other.polynomial[n]):
break
assert len(self.polynomial)>n
for i in range(n):
assert abs(self.polynomial[i])<=self.eps
self_polynomial=self.polynomial[n:]
other_polynomial=other.polynomial[n:]
if self.mod:
inve=MOD(self.mod).Pow(other_polynomial[0],-1)
else:
inve=1/other_polynomial[0]
quot=[]
for i in range(len(self_polynomial)-len(other_polynomial)+1):
if self.mod:
quot.append(self_polynomial[i]*inve%self.mod)
else:
quot.append(self_polynomial[i]*inve)
for j in range(len(other_polynomial)):
self_polynomial[i+j]-=other_polynomial[j]*quot[-1]
if self.mod:
self_polynomial[i+j]%=self.mod
for i in range(max(0,len(self_polynomial)-len(other_polynomial)+1),len(self_polynomial)):
if self.eps<abs(self_polynomial[i]):
assert self.max_degree!=-1
self_polynomial=self_polynomial[-len(other_polynomial)+1:]+[0]*(len(other_polynomial)-1-len(self_polynomial))
while len(quot)<=self.max_degree:
self_polynomial.append(0)
if self.mod:
quot.append(self_polynomial[0]*inve%self.mod)
self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))]
else:
quot.append(self_polynomial[0]*inve)
self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))]
break
quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
else:
assert self.eps<abs(other)
if self.mod:
inve=MOD(self.mod).Pow(other,-1)
quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
else:
quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return quot
def __rtruediv__(self,other):
assert self.polynomial and self.eps<self.polynomial[0]
assert self.max_degree!=-1
if self.mod:
quot=[MOD(self.mod).Pow(self.polynomial[0],-1)]
if self.mod==998244353:
prim_root=3
prim_root_inve=332748118
else:
prim_root=Primitive_Root(self.mod)
prim_root_inve=MOD(self.mod).Pow(prim_root,-1)
def DFT(polynomial,n,inverse=False):
polynomial=polynomial+[0]*((1<<n)-len(polynomial))
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
x=pow(prim_root,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod
x=pow((mod+1)//2,n,mod)
for i in range(1<<n):
polynomial[i]*=x
polynomial[i]%=mod
else:
for bit in range(n,0,-1):
a=1<<bit-1
x=pow(prim_root_inve,mod-1>>bit,mod)
U=[1]
for _ in range(a):
U.append(U[-1]*x%mod)
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod
return polynomial
else:
quot=[1/self.polynomial[0]]
def DFT(polynomial,n,inverse=False):
N=len(polynomial)
if inverse:
primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
else:
primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
polynomial=polynomial+[0]*((1<<n)-N)
if inverse:
for bit in range(1,n+1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit]
for i in range(1<<n):
polynomial[i]=round((polynomial[i]/(1<<n)).real)
else:
for bit in range(n,0,-1):
a=1<<bit-1
for i in range(1<<n-bit):
for j in range(a):
s=i*2*a+j
t=s+a
polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t])
return polynomial
for n in range(self.max_degree.bit_length()):
prev=quot
if self.mod:
polynomial=[x*y*y%self.mod for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))]
quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1]
else:
polynomial=[x*y*y for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))]
quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1]
for i in range(1<<n):
quot[i]=2*prev[i]-quot[i]
if self.mod:
quot[i]%=self.mod
for i in range(1<<n,1<<n+1):
quot[i]=-quot[i]
if self.mod:
quot[i]%=self.mod
quot=quot[:self.max_degree+1]
for i in range(len(quot)):
quot[i]*=other
if self.mod:
quot[i]%=self.mod
return quot
def __floordiv__(self,other):
assert type(other)==Polynomial
quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
rema=[x for x in self.polynomial]
if self.mod:
inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
rema[i+j]%=self.mod
else:
inve=1/other.polynomial[-1]
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return quot
def __mod__(self,other):
assert type(other)==Polynomial
quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
rema=[x for x in self.polynomial]
if self.mod:
inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
rema[i+j]%=self.mod
else:
inve=1/other.polynomial[-1]
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
while rema and abs(rema[-1])<=self.eps:
rema.pop()
rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return rema
def __divmod__(self,other):
assert type(other)==Polynomial
quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
rema=[x for x in self.polynomial]
if self.mod:
inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
rema[i+j]%=self.mod
else:
inve=1/other.polynomial[-1]
for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
quot[i]=rema[i+len(other.polynomial)-1]*inve
for j in range(len(other.polynomial)):
rema[i+j]-=quot[i]*other.polynomial[j]
while rema and abs(rema[-1])<=self.eps:
rema.pop()
quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return quot,rema
def __neg__(self):
if self.mod:
nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
else:
nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return nega
def __pos__(self):
posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
return posi
def __bool__(self):
return self.polynomial
def __getitem__(self,n):
if type(n)==int:
if n<=len(self.polynomial)-1:
return self.polynomial[n]
else:
return 0
else:
return Polynomial(polynomial=self.polynomial[n],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
def __setitem__(self,n,x):
if self.mod:
x%=self.mod
if self.max_degree==-1 or n<=self.max_degree:
if n<=len(self.polynomial)-1:
self.polynomial[n]=x
elif self.eps<abs(x):
self.polynomial+=[0]*(n-len(self.polynomial))+[x]
def __iter__(self):
for x in self.polynomial:
yield x
def __call__(self,x):
retu=0
pow_x=1
for i in range(len(self.polynomial)):
retu+=pow_x*self.polynomial[i]
pow_x*=x
if self.mod:
retu%=self.mod
pow_x%=self.mod
return retu
def __str__(self):
return "["+", ".join(map(str,self.polynomial))+"]"
def degree(self):
return len(self.polynomial)-1
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=None):
self.p=p
self.e=e
if self.e==None:
self.mod=self.p
else:
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
if self.e==None:
for i in range(1,N+1):
self.factorial.append(self.factorial[-1]*i%self.mod)
else:
self.cnt=[0]*(N+1)
for i in range(1,N+1):
self.cnt[i]=self.cnt[i-1]
ii=i
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append(self.factorial[-1]*ii%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
if N<0:
return 0
retu=self.factorial[N]
if self.e!=None and self.cnt[N]:
retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
retu%=self.mod
return retu
def Fact_Inve(self,N):
if self.e!=None and self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
if self.e!=None:
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
K,N,M=map(int,readline().split())
A=list(map(int,readline().split()))+[0]*N
C=list(map(int,readline().split()))
query=[[] for i in range(N+1)]
for _ in range(M):
l,r=map(int,readline().split())
query[r-l].append((l,r))
mod=10**9+7
for i in range(K,N+K):
for j in range(K):
A[i]+=A[i-j-1]*C[j]
A[i]%=mod
C=Polynomial([1]+[-c for c in C],mod=mod)
imos=[0]*(N+K)
P=[0]*(2*K)
for i in range(K):
for j in range(K+1):
P[i+j]+=A[i]*C[j]%mod
P[i+j]%=mod
for i in range(1,N+1):
for l,r in query[i]:
for j in range(l,l+K):
imos[j]+=P[j-l]
imos[j]%=mod
for i in range(1,N+1):
for j in range(K+1):
P[j]-=C[j]*A[i-1]%mod
P[j]%=mod
P=P[1:]+[0]
for j in range(K-1,2*K):
P[j]+=C[j-K+1]*A[i+K-1]%mod
P[j]%=mod
for l,r in query[i]:
for j in range(r,r+K):
imos[j]-=P[j-r]
imos=Polynomial(imos,max_degree=N-1,mod=mod)
imos/=C
for i in range(N):
print(imos[i])
vwxyz