結果
| 問題 |
No.526 フィボナッチ数列の第N項をMで割った余りを求める
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-07-07 00:00:45 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 4,277 bytes |
| コンパイル時間 | 4,688 ms |
| コンパイル使用メモリ | 256,728 KB |
| 最終ジャッジ日時 | 2025-01-30 05:07:26 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 12 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
using namespace atcoder;
// using mint = modint1000000007;
// using mint = modint998244353;
typedef long long ll;
#define int long long
#define rep(i,n) for (int i = 0; i < (int)(n); ++i)
#define nrep(i,n) for (int i = 1; i <= (int)(n); ++i)
#define all(x) (x).begin(),(x).end()
#define bit(n,k) ((n>>k)&1) /*nのk bit目*/
#define bit_count(x) __builtin_popcountll(x)
#define debug(x) cout << #x << ": " << x << endl;
using P = pair<int,int>;
#define INF 1001001001
#define LINF (1LL<<60)
template<class T> inline bool chmax(T& a, T b){ if(a<b){ a=b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b){ if(a>b){ a=b; return 1; } return 0; }
using mint = modint;
template <typename T>
struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}
Matrix(size_t n) : A(n, vector<T>(n, 0)) {}
size_t height() const { return A.size(); }
size_t width() const {
assert(height() > 0);
return A[0].size();
}
inline const vector<T> &operator[](int k) const { return A.at(k); }
inline vector<T> &operator[](int k) { return A.at(k); }
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; ++i) mat[i][i] = 1;
return mat;
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) (*this)[i][j] += B[i][j];
return *this;
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) (*this)[i][j] -= B[i][j];
return *this;
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n, vector<T>(m, 0));
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) for (int k = 0; k < p; ++k) C[i][j] += (*this)[i][k] * B[k][j];
A.swap(C);
return *this;
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return *this;
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
friend istream &operator>>(istream &is, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { is >> p[i][j]; } }
return is;
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; ++i) {
os << '[';
for (int j = 0; j < m; ++j) { os << p[i][j] << (j + 1 == m ? "]\n" : ", "); }
}
return os;
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); ++i) {
int idx = -1;
for (int j = i; j < width(); ++j) if (B[j][i] != 0) idx = j;
if (idx == -1) return T(0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); ++j) B[i][j] /= vv;
for (int j = i + 1; j < width(); ++j) {
T a = B[j][i];
for (int k = 0; k < width(); ++k) B[j][k] -= B[i][k] * a;
}
}
return ret;
}
Matrix pow(ll b) {
Matrix<mint> ret = I(height());
while(b) {
if (b%2 == 1) ret = ret * (*this);
b /= 2;
(*this) = (*this) * (*this);
}
return ret;
}
void show() {
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
if (j != 0) cout << " ";
cout << A[i][j];
}
cout << endl;
}
}
};
int32_t main() {
int n, m; cin >> n >> m;
mint::set_mod(m);
Matrix<mint> a(2);
a[0][0] = 0, a[0][1] = 1;
a[1][0] = 1, a[1][1] = 1;
Matrix<mint> b(2,1);
b[0][0] = 0, b[1][0] = 1;
cout << (a.pow(n-2)*b)[1][0].val() << endl;
}