結果
| 問題 |
No.1069 電柱 / Pole (Hard)
|
| コンテスト | |
| ユーザー |
bin101
|
| 提出日時 | 2022-07-07 02:37:42 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 16,907 bytes |
| コンパイル時間 | 3,345 ms |
| コンパイル使用メモリ | 227,308 KB |
| 実行使用メモリ | 12,288 KB |
| 最終ジャッジ日時 | 2024-12-23 15:49:15 |
| 合計ジャッジ時間 | 6,411 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 48 WA * 31 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using ll=long long int;
//using Int=__int128;
#define ALL(A) A.begin(),A.end()
template<typename T1,typename T2> bool chmin(T1 &a,T2 b){if(a<=b)return 0; a=b; return 1;}
template<typename T1,typename T2> bool chmax(T1 &a,T2 b){if(a>=b)return 0; a=b; return 1;}
template<typename T> constexpr int bitUP(T x,int a){return (x>>a)&1;}
//→ ↓ ← ↑
int dh[4]={0,1,0,-1}, dw[4]={1,0,-1,0};
//右上から時計回り
//int dh[8]={-1,0,1,1,1,0,-1,-1}, dw[8]={1,1,1,0,-1,-1,-1,0};
long double EPS = 1e-6;
long double PI = acos(-1);
const ll INF=(1LL<<62);
const int MAX=(1<<30);
//constexpr ll MOD=1000000000+7;
constexpr ll MOD=998244353;
inline void bin101(){
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(20);
}
using pii=pair<int,int>;
using pil=pair<int,ll>;
using pli=pair<ll,int>;
using pll=pair<ll,ll>;
using psi=pair<string,int>;
using pis=pair<int,string>;
using psl=pair<string,ll>;
using pls=pair<ll,string>;
using pss=pair<string,string>;
using Graph=vector<vector<int>>;
template<typename T >
struct edge {
int to;
T cost;
edge()=default;
edge(int to, T cost) : to(to), cost(cost) {}
};
template<typename T>
using WeightGraph=vector<vector<edge<T>>>;
template<typename T>
void CinGraph(int M,WeightGraph<T> &g,bool directed=false,bool index1=true){
while(M--){
int s,t;
T cost;
cin>>s>>t>>cost;
if(index1) s--,t--;
g[s].emplace_back(t,cost);
if(not directed) g[t].emplace_back(s,cost);
}
}
void CinGraph(int M,Graph &g,bool directed=false,bool index1=true){
while(M--){
int s,t;
cin>>s>>t;
if(index1) s--,t--;
g[s].push_back(t);
if(not directed) g[t].push_back(s);
}
}
//0-indexed vector cin
template<typename T>
inline istream &operator>>(istream &is,vector<T> &v) {
for(size_t i=0;i<v.size();i++) is>>v[i];
return is;
}
//0-indexed vector cin
template<typename T>
inline istream &operator>>(istream &is,vector<vector<T>> &v) {
for(size_t i=0;i<v.size();i++){
is>>v[i];
}
return is;
}
//vector cout
template<typename T>
inline ostream &operator<<(ostream &os,const vector<T> &v) {
bool sp=true;
if(string(typeid(T).name())=="c") sp=false;
for(size_t i=0;i<v.size();i++){
if(i and sp) os<<" ";
os<<v[i];
}
return os;
}
//vector<vector> cout
template<typename T>
inline ostream &operator<<(ostream &os,const vector<vector<T>> &v) {
for(size_t i=0;i<v.size();i++){
os<<v[i];
if(i+1!=v.size()) os<<"\n";
}
return os;
}
//Graph out
template<typename T>
inline ostream &operator<<(ostream &os,const Graph &g) {
for(size_t i=0;i<g.size();i++){
for(int to:g[i]){
os<<i<<"->"<<to<<" ";
}
os<<endl;
}
return os;
}
//WeightGraph out
template<typename T>
inline ostream &operator<<(ostream &os,const WeightGraph<T> &g) {
for(size_t i=0;i<g.size();i++){
for(auto e:g[i]){
os<<i<<"->"<<e.to<<"("<<e.cost<<") ";
}
os<<endl;
}
return os;
}
//要素数n 初期値x
template<typename T>
inline vector<T> vmake(size_t n,T x){
return vector<T>(n,x);
}
//a,b,c,x data[a][b][c] 初期値x
template<typename... Args>
auto vmake(size_t n,Args... args){
auto v=vmake(args...);
return vector<decltype(v)>(n,move(v));
}
template<typename V,typename T>
void fill(V &v,const T value){
v=value;
}
template<typename V,typename T>
void fill(vector<V> &vec,const T value){
for(auto &v:vec) fill(v,value);
}
//pair cout
template<typename T, typename U>
inline ostream &operator<<(ostream &os,const pair<T,U> &p) {
os<<p.first<<" "<<p.second;
return os;
}
//pair cin
template<typename T, typename U>
inline istream &operator>>(istream &is,pair<T,U> &p) {
is>>p.first>>p.second;
return is;
}
//ソート
template<typename T>
inline void vsort(vector<T> &v){
sort(v.begin(),v.end());
}
//逆順ソート
template<typename T>
inline void rvsort(vector<T> &v){
sort(v.rbegin(),v.rend());
}
//1ビットの数を返す
inline int popcount(int x){
return __builtin_popcount(x);
}
//1ビットの数を返す
inline int popcount(ll x){
return __builtin_popcountll(x);
}
template<typename T>
inline void Compress(vector<T> &C){
sort(C.begin(),C.end());
C.erase(unique(C.begin(),C.end()),C.end());
}
template<typename T>
inline int lower_idx(const vector<T> &C,T value){
return lower_bound(C.begin(),C.end(),value)-C.begin();
}
template<typename T>
inline int upper_idx(const vector<T> &C,T value){
return upper_bound(C.begin(),C.end(),value)-C.begin();
}
//時計回りに90度回転
template<typename T>
inline void rotate90(vector<vector<T>> &C){
vector<vector<T>> D(C[0].size(),vector<T>(C.size()));
for(int h=0;h<C.size();h++){
for(int w=0;w<C[h].size();w++){
D[w][C.size()-1-h]=C[h][w];
}
}
C=D;
}
//補グラフを返す
//i→iのような辺は加えない
Graph ComplementGraph(const Graph &g){
size_t sz=g.size();
bool used[sz][sz];
fill(used[0],used[sz],false);
for(size_t i=0;i<sz;i++){
for(int to:g[i]){
used[i][to]=true;
}
}
Graph ret(sz);
for(size_t i=0;i<sz;i++){
for(size_t j=0;j<sz;j++){
if(used[i][j]) continue;
if(i==j) continue;
ret[i].push_back(j);
}
}
return ret;
}
//グラフの分解 secondはある頂点がどこに対応するか id[i]={2,3}のとき,頂点iはret[2][3]に対応
//無効グラフのみに対応
pair<vector<Graph>,vector<pair<int,int>>> GraphDecomposition(const Graph &g){
vector<pair<int,int>> id(g.size(),pair<int,int>(-1,-1));
vector<Graph> ret;
vector<int> now;
for(size_t i=0;i<g.size();i++){
if(id[i].first!=-1) continue;
id[i].first=ret.size();
id[i].second=0;
now.push_back(i);
for(size_t j=0;j<now.size();j++){
for(int to:g[now[j]]){
if(id[to].first==-1){
id[to].first=ret.size();
id[to].second=now.size();
now.push_back(to);
}
}
}
Graph r(now.size());
for(size_t j=0;j<now.size();j++){
r[j]=g[now[j]];
for(int &to:r[j]){
to=id[to].second;
}
}
ret.push_back(r);
now.clear();
}
return make_pair(ret,id);
}
//0indexを想定
bool OutGrid(ll h,ll w,ll H,ll W){
return (h>=H or w>=W or h<0 or w<0);
}
void NO(){
cout<<"NO"<<"\n";
}
void YES(){
cout<<"YES"<<"\n";
}
void No(){
cout<<"No"<<"\n";
}
void Yes(){
cout<<"Yes"<<"\n";
}
namespace overflow{
template<typename T>
T max(){
return numeric_limits<T>::max();
}
template<typename T>
T ADD(T a,T b){
T res;
return __builtin_add_overflow(a,b,&res)?max<T>():res;
}
template<typename T>
T MUL(T a,T b){
T res;
return __builtin_mul_overflow(a,b,&res)?max<T>():res;
}
};
using namespace overflow;
struct mint{
using u64=uint_fast64_t;
u64 a;
constexpr mint() :a(0){}
constexpr mint(ll x) :a((x>=0)?(x%MOD):(x%MOD+MOD) ) {}
inline constexpr mint operator+(const mint rhs)const noexcept{
return mint(*this)+=rhs;
}
inline constexpr mint operator-(const mint rhs)const noexcept{
return mint(*this)-=rhs;
}
inline constexpr mint operator*(const mint rhs)const noexcept{
return mint(*this)*=rhs;
}
inline constexpr mint operator/(const mint rhs)const noexcept{
return mint(*this)/=rhs;
}
inline constexpr mint operator+(const ll rhs) const noexcept{
return mint(*this)+=mint(rhs);
}
inline constexpr mint operator-(const ll rhs)const noexcept{
return mint(*this)-=mint(rhs);
}
inline constexpr mint operator*(const ll rhs)const noexcept{
return mint(*this)*=mint(rhs);
}
inline constexpr mint operator/(const ll rhs)const noexcept{
return mint(*this)/=mint(rhs);
}
inline constexpr mint &operator+=(const mint rhs)noexcept{
a+=rhs.a;
if(a>=MOD) a-=MOD;
return *this;
}
inline constexpr mint &operator-=(const mint rhs)noexcept{
if(rhs.a>a) a+=MOD;
a-=rhs.a;
return *this;
}
inline constexpr mint &operator*=(const mint rhs)noexcept{
a=(a*rhs.a)%MOD;
return *this;
}
inline constexpr mint &operator/=(mint rhs)noexcept{
a=(a*rhs.inverse().a)%MOD;
return *this;
}
inline constexpr mint &operator+=(const ll rhs)noexcept{
return *this+=mint(rhs);
}
inline constexpr mint &operator-=(const ll rhs)noexcept{
return *this-=mint(rhs);
}
inline constexpr mint &operator*=(const ll rhs)noexcept{
return *this*=mint(rhs);
}
inline constexpr mint &operator/=(const ll rhs)noexcept{
return *this/=mint(rhs);
}
inline constexpr mint operator=(const ll x)noexcept{
a=(x>=0)?(x%MOD):(x%MOD+MOD);
return *this;
}
inline constexpr bool operator==(const mint p)const noexcept{
return a==p.a;
}
inline constexpr bool operator!=(const mint p)const noexcept{
return a!=p.a;
}
inline constexpr mint pow(ll N) const noexcept{
mint ans(1LL),p(a);
while(N>0){
if(bitUP(N,0)){
ans*=p;
}
p*=p;
N>>=1;
}
return ans;
}
inline constexpr mint inverse() const noexcept{
return pow(MOD-2);
}
};
inline constexpr mint operator+(const ll &a,const mint &b)noexcept{
return mint(a)+=b;
}
inline constexpr mint operator-(const ll &a,const mint &b)noexcept{
return mint(a)-=b;
}
inline constexpr mint operator*(const ll &a,const mint &b)noexcept{
return mint(a)*=b;
}
inline constexpr mint operator/(const ll &a,const mint &b)noexcept{
return mint(a)/=b;
}
//cout
inline ostream &operator<<(ostream &os,const mint &p) {
return os<<p.a;
}
//cin
inline istream &operator>>(istream &is,mint &p) {
ll t;
is>>t;
p=t;
return is;
}
struct Binominal{
vector<mint> fac,finv,inv; //fac[n]:n! finv:(n!)の逆元
int sz;
Binominal(int n=10) :sz(1){
if(n<=0) n=10;
init(n);
}
inline void init(int n){
fac.resize(n+1,1);
finv.resize(n+1,1);
inv.resize(n+1,1);
for(int i=sz+1;i<=n;i++){
fac[i]=fac[i-1]*i;
inv[i]=MOD-inv[MOD%i]*(MOD/i);
finv[i]=finv[i-1]*inv[i];
}
sz=n;
}
//nCk(n,k<=N) をO(1)で求める
inline mint com(int n,int k){
if(n<k) return mint(0);
if(n<0 || k<0) return mint(0);
if(n>sz) init(n);
return fac[n]*finv[k]*finv[n-k];
}
//nCk(k<=N) をO(k) で求める
inline mint rcom(ll n,int k){
if(n<0 || k<0 || n<k) return mint(0);
if(k>sz) init(k);
mint ret(1);
for(int i=0;i<k;i++){
ret*=n-i;
}
ret*=finv[k];
return ret;
}
//重複組み合わせ n種類のものから重複を許してk個を選ぶ
//〇がn個,|がk個
inline mint h(int n,int k){
return com(n+k-1,k);
}
//順列の公式
inline mint P(int n,int k){
if(n<k) return 0;
if(n>sz) init(n);
return fac[n]*finv[n-k];
}
};
vector<int> Subset(int S,bool zero=false,bool full=false){
vector<int> ret;
int now=(S-1)&S;
if(full and S){
ret.push_back(S);
}
do{
ret.push_back(now);
now=(now-1)&S;
}while(now!=0);
if(zero){
ret.push_back(0);
}
return ret;
}
template<typename T>
T SUM(const vector<T> &v,int s,int t){
chmax(s,0);
chmin(t,int(v.size())-1);
if(s>t) return 0;
if(s==0) return v[t];
else return v[t]-v[s-1];
}
template<typename T>
void buildSUM(vector<T> &v){
for(size_t i=1;i<v.size();i++){
v[i]+=v[i-1];
}
return;
}
//erase_vertexの頂点を消して
//インデックスを調整したグラフを返す
Graph EraseVertex(Graph graph,vector<int> erase_vertex){
vector<bool> erase(graph.size(),false);
vector<int> sum(graph.size(),0);
int cnt_erase=0;
for(int idx:erase_vertex){
if(erase[idx]) continue;
cnt_erase++;
erase[idx]=true;
sum[idx]++;
}
for(int i=1;i<(int)sum.size();i++){
sum[i]+=sum[i-1];
}
for(int i=0;i<int(graph.size())-cnt_erase;i++){
int pre_i=i+sum[i];
graph[i].clear();
for(int to:graph[pre_i]){
if(erase[to]) continue;
graph[i].push_back(to-sum[to]);
}
}
return graph;
}
//https://qiita.com/nariaki3551/items/821dc6ffdc552d3d5f22
//https://yamakuramun.info/2021/02/24/309/
template<typename T>
vector<pair<T,vector<int>>> YenAlgorithm(const WeightGraph<T> &graph,int k,int s,int t){
assert(k>=1);
int N=graph.size();
const auto max_inf = numeric_limits< T >::max();
const auto min_inf = numeric_limits< T >::max();
assert(0<=s and s<N);
assert(0<=t and t<N);
using P=pair<T,vector<int>>;
map<vector<int>,unordered_set<int>> ban_edge;
//Pを返す
auto dijkstra=[&](const vector<int> &spur_path){
using pti=pair<T,int>;
vector<pti> dist(N,pti(max_inf,-1));
for(int v:spur_path){
dist[v].first=min_inf;
}
priority_queue<pti,vector<pti>,greater<pti>> que;
int start=s;
if(spur_path.size()) start=spur_path.back();
dist[start].first=0;
auto &ban=ban_edge[spur_path];
que.emplace(0,start);
while(!que.empty()){
T cost;
int v;
tie(cost,v)=que.top();
if(v==t) break;
que.pop();
if(dist[v].first<cost) continue;
for(auto &e:graph[v]){
if(v==start and ban.count(e.to)) continue;
auto next_cost=cost+e.cost;
if(chmin(dist[e.to].first,next_cost)){
dist[e.to].second=v;
que.emplace(dist[e.to].first,e.to);
}
}
}
vector<int> path;
if(dist[t].first==max_inf){
return P(dist[t].first,path);
}
int now=t;
while(now!=start){
path.push_back(now);
now=dist[now].second;
}
//reverse(path.begin(),path.end());
return P(dist[t].first,path);
};
vector<P> ans;
auto compare=[](P a,P b){
return a.first>b.first;
};
priority_queue<P,vector<P>,decltype(compare)> candidate(compare);
vector<int> prev_path;
vector<int> spur_path;
set<vector<int>> set_ans;
while(k--){
if(ans.size()==0){
auto c=dijkstra(spur_path);
c.second.push_back(s);
reverse(c.second.begin(),c.second.end());
if(c.first!=max_inf) candidate.push(c);
}else{
T prev_cost=0;
for(int i=0;i<int(prev_path.size())-1;i++){
spur_path.push_back(prev_path[i]);
ban_edge[spur_path].insert(prev_path[i+1]);
auto c=dijkstra(spur_path);
for(int j=i;j>=0;j--) c.second.push_back(prev_path[j]);
reverse(c.second.begin(),c.second.end());
c.first+=prev_cost;
if(c.first!=max_inf) candidate.push(c);
for(auto &e:graph[prev_path[i]]){
if(e.to==prev_path[i+1]) prev_cost+=e.cost;
}
}
}
bool ok=false;
while(candidate.size()){
auto c=candidate.top();
candidate.pop();
if(set_ans.count(c.second)) continue;
ans.push_back(c);
prev_path=c.second;
ok=true;
set_ans.insert(c.second);
break;
}
if(not ok) break;
spur_path.clear();
}
return ans;
}
void solve(){
int N,M,K;
cin>>N>>M>>K;
int s,t;
cin>>s>>t;
s--; t--;
WeightGraph<double> graph(N);
vector<int> p(N),q(N);
for(int i=0;i<N;i++){
cin>>p[i]>>q[i];
}
for(int i=0;i<M;i++){
int a,b;
cin>>a>>b;
a--; b--;
double dp=p[a]-p[b],dq=q[a]-q[b];
double cost=sqrt(dp*dp+dq*dq);
graph[a].emplace_back(b,cost);
graph[b].emplace_back(a,cost);
}
auto ans=YenAlgorithm(graph,K,s,t);
for(int i=0;i<K;i++){
if(i>=int(ans.size())){
cout<<-1<<endl;
}else{
cout<<ans[i].first<<endl;
}
}
}
int main(){
bin101();
int T=1;
//cin>>T;
while(T--) solve();
}
bin101