結果
問題 | No.1069 電柱 / Pole (Hard) |
ユーザー | matumoto |
提出日時 | 2022-07-07 21:04:23 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 10,055 bytes |
コンパイル時間 | 310 ms |
コンパイル使用メモリ | 82,396 KB |
実行使用メモリ | 463,428 KB |
最終ジャッジ日時 | 2024-12-25 01:25:56 |
合計ジャッジ時間 | 52,516 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 65 ms
75,136 KB |
testcase_01 | AC | 69 ms
344,248 KB |
testcase_02 | AC | 59 ms
75,136 KB |
testcase_03 | AC | 58 ms
70,384 KB |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | AC | 851 ms
178,200 KB |
testcase_07 | AC | 781 ms
169,252 KB |
testcase_08 | AC | 894 ms
197,892 KB |
testcase_09 | AC | 862 ms
182,812 KB |
testcase_10 | AC | 579 ms
135,000 KB |
testcase_11 | AC | 186 ms
83,160 KB |
testcase_12 | AC | 419 ms
111,864 KB |
testcase_13 | AC | 1,708 ms
269,124 KB |
testcase_14 | AC | 1,319 ms
271,924 KB |
testcase_15 | AC | 874 ms
196,036 KB |
testcase_16 | AC | 480 ms
114,356 KB |
testcase_17 | WA | - |
testcase_18 | AC | 575 ms
126,256 KB |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | AC | 1,573 ms
269,936 KB |
testcase_22 | AC | 872 ms
205,768 KB |
testcase_23 | TLE | - |
testcase_24 | AC | 728 ms
171,848 KB |
testcase_25 | AC | 760 ms
173,908 KB |
testcase_26 | AC | 756 ms
177,872 KB |
testcase_27 | AC | 780 ms
177,876 KB |
testcase_28 | AC | 791 ms
177,880 KB |
testcase_29 | AC | 278 ms
88,860 KB |
testcase_30 | AC | 213 ms
83,248 KB |
testcase_31 | AC | 60 ms
70,624 KB |
testcase_32 | AC | 62 ms
71,424 KB |
testcase_33 | WA | - |
testcase_34 | AC | 139 ms
80,000 KB |
testcase_35 | AC | 60 ms
70,272 KB |
testcase_36 | AC | 158 ms
80,832 KB |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | AC | 383 ms
93,172 KB |
testcase_43 | AC | 430 ms
97,768 KB |
testcase_44 | AC | 735 ms
158,772 KB |
testcase_45 | AC | 740 ms
169,260 KB |
testcase_46 | AC | 777 ms
172,248 KB |
testcase_47 | AC | 720 ms
162,764 KB |
testcase_48 | AC | 772 ms
163,672 KB |
testcase_49 | AC | 730 ms
161,736 KB |
testcase_50 | AC | 347 ms
94,456 KB |
testcase_51 | AC | 790 ms
165,920 KB |
testcase_52 | AC | 316 ms
95,248 KB |
testcase_53 | AC | 657 ms
151,796 KB |
testcase_54 | AC | 90 ms
79,232 KB |
testcase_55 | WA | - |
testcase_56 | AC | 65 ms
70,272 KB |
testcase_57 | WA | - |
testcase_58 | AC | 64 ms
70,528 KB |
testcase_59 | WA | - |
testcase_60 | AC | 87 ms
78,976 KB |
testcase_61 | AC | 179 ms
81,332 KB |
testcase_62 | AC | 59 ms
69,632 KB |
testcase_63 | AC | 58 ms
69,504 KB |
testcase_64 | WA | - |
testcase_65 | AC | 60 ms
71,040 KB |
testcase_66 | AC | 116 ms
79,744 KB |
testcase_67 | AC | 63 ms
70,784 KB |
testcase_68 | WA | - |
testcase_69 | AC | 740 ms
175,808 KB |
testcase_70 | AC | 267 ms
89,612 KB |
testcase_71 | AC | 579 ms
143,628 KB |
testcase_72 | AC | 357 ms
99,672 KB |
testcase_73 | AC | 669 ms
152,632 KB |
testcase_74 | AC | 1,445 ms
272,652 KB |
testcase_75 | AC | 1,212 ms
260,492 KB |
testcase_76 | AC | 808 ms
177,480 KB |
testcase_77 | WA | - |
testcase_78 | WA | - |
testcase_79 | AC | 1,497 ms
269,336 KB |
testcase_80 | AC | 749 ms
168,244 KB |
testcase_81 | AC | 965 ms
213,448 KB |
testcase_82 | WA | - |
ソースコード
# verification-helper: PROBLEM https://yukicoder.me/problems/no/1069 import sys import heapq from typing import List import copy import math # Pointクラス # コンストラクタで(x,y)に代入可能(指定しなかったら(0,0)の地点) class Point: def __init__(self, x: float = 0, y: float = 0, idx: int = 0): self.x = x self.y = y self.idx = idx # otherがPoint型でないならNotImplementedエラーを返す(標準にある) def __eq__(self, other) -> bool: if not isinstance(other, Point): return NotImplemented is_same_x = utility.equals(self.x, other.x) is_same_y = utility.equals(self.y, other.y) return is_same_x and is_same_y def __lt__(self, other) -> bool: return (self.x < other.x) or (self.x == other.x and self.y < other.y) # -self def __neg__(self): return Point(-self.x, -self.y) # self + Point def __add__(self, other): if not isinstance(other, Point): return NotImplemented return Point(self.x + other.x, self.y + other.y) # self - Point def __sub__(self, other): if not isinstance(other, Point): return NotImplemented return self + (-other) # self * Point def __mul__(self, other): if not isinstance(other, Point): return NotImplemented return Point((self.x * other.x) + (self.y * other.y), (self.x * other.y) + (self.y * other.x)) # self * int # self * float def __mul__(self, other): if not (isinstance(other, int) or isinstance(other, float)): return NotImplemented return Point(self.x * other, self.y * other) # set用のhash、重複した地点はないことを前提にidxを参照してます。 def __hash__(self): return hash(self.idx) # idxのセッター def set_idx(self, idx): self.idx = idx # -pi<=a<=pi となる角度a[rad]を返す def radian(p: Point) -> float: return math.atan2(p.y, p.x) # -180<=a<=180 となる角度a[deg]を返す def degree(p: Point) -> float: return math.degrees(math.atan2(p.y, p.x)) # x*x+y*yを返す(ノルム) def norm(p: Point) -> float: return p.x * p.x + p.y * p.y # 絶対値|p|を返す def abs(p: Point) -> float: return math.sqrt(norm(p)) # pをradだけ(0,0)を中心に回転させる def rotate(p: Point, rad: float) -> Point: return Point(math.cos(rad) * p.x + math.sin(-rad) * p.y, math.sin(rad) * p.x + math.cos(-rad) * p.y) def distance_pp(p1: Point, p2: Point) -> float: return abs(p1 - p2) # 十分に小さい数 def eps() -> float: return pow(10, -7) # 相対誤差がeps() def equals(a: float, b: float) -> bool: return math.fabs(a - b) < eps() # 符号を調べる def sign(a: float) -> int: if a > eps(): return +1 if a < -eps(): return -1 return 0 class Edge: def __init__(self, from_idx: int = 0, to_idx: int = 0, cost: float = 0): self.from_idx = from_idx self.to_idx = to_idx self.cost = cost def __eq__(self, other) -> bool: if not isinstance(other, Edge): return NotImplemented same1 = self.from_idx == other.from_idx same2 = self.to_idx == other.to_idx same3 = self.cost == other.cost return same1 and same2 and same3 def __lt__(self, other) -> bool: if not isinstance(other, Edge): return NotImplemented return self.cost < other.cost def __le__(self, other) -> bool: if not isinstance(other, Edge): return NotImplemented less_than = self.cost < other.cost equal = equals(self.cost, other.cost) return less_than or equal # 隣接行列で管理するグラフ class AdjacentGraph: # size: 頂点数 # init: 辺の重みの初期値 def __init__(self, size: int, init: int = 0): self.size = size self.dists: List[List[int]] = [[init for _ in range(size)] for _ in range(size)] self.edges: List[Edge] = [] def add_edge(self, edge: Edge): self.edges.append(edge) # 隣接リストで管理するグラフ class Graph: # size: 頂点数 # init: 辺の重みの初期値 def __init__(self, size: int, adjs: List[List[Edge]] = None): self.size = size if adjs == None: self.adjs: List[List[Edge]] = [[] for _ in range(size)] # 隣接頂点 else: self.adjs: List[List[Edge]] = copy.deepcopy(adjs) self.edges: List[Edge] = [] def add_edge(self, edge: Edge): self.edges.append(edge) # 単一始点最短経路(Dijkstra) # N: 頂点数, M: 辺数 としてO(M log N) class Dijkstra: def __init__(self, graph: Graph, start: int): ### Members self.graph = copy.deepcopy(graph) self.inf = 10**18 n = self.graph.size # bs[i] := 頂点iへの最短経路の1つ前の頂点番号(befores) self.bs = [-1 for _ in range(n)] # ds[i] := 頂点iにたどり着く最短経路(distances) self.ds = [self.inf for _ in range(n)] #n = self.graph.size for edge in self.graph.edges: f = edge.from_idx to = edge.to_idx cost = edge.cost self.graph.adjs[f].append(Edge(f, to, cost)) ### build self.ds[start] = 0 # priority_queue pq: List[tuple[int,int]] = [] pq.append((self.ds[start], start)) while pq: tmp: tuple[int,int] = heapq.heappop(pq) cost = tmp[0] v = tmp[1] if self.ds[v] < cost: continue for e in self.graph.adjs[v]: to = e.to_idx if self.ds[to] > self.ds[v] + e.cost: self.ds[to] = self.ds[v] + e.cost self.bs[to] = v heapq.heappush(pq, (self.ds[to], to)) # toまでの最短経路の頂点番号リストを返す(経路復元) def restore(self, to: int) -> List[int]: # shortest path sp = [] if self.bs[to] == -1: sp.append(to) return sp while to != -1: sp.append(to) to = self.bs[to] sp.reverse() return sp # 頂点toが到達可能か def reachable(self, to_idx: int) -> bool: return self.ds[to_idx] <= self.inf // 2 class KthShortestPath: def __init__(self, graph: Graph, start: int, goal: int, k: int): # Members self.inf = 10**18 self.dists: List[int] = [] self.shortest_paths: List[List[int]] = [] n = graph.size g = copy.deepcopy(graph) pq: List[(int, List[int])] = [] prev_path: List[int] = [] # 最初の最短経路を求める d = Dijkstra(g, start) first_cost = d.ds[goal] first_path = d.restore(goal) # 使用済み経路を格納 used_path[k] = kth path used_path: List[List[int]] = [] self.dists.append(first_cost) self.shortest_paths.append(first_path) prev_path = first_path used_path.append(first_path) # 各頂点ごとに使用した辺を格納しておくO(K(N+M)) # used_edges[v] = [Edge(), Edge()] # used_edges: List[List[Edge]] # 各頂点ごとにグラフを持つO(N(N+M)) # 辺の管理が楽になる # graphs: List[Graph] graphs: List[Graph] = [g for _ in range(n)] # 2番目〜K番目の最短経路を求めるO(K) for _ in range(k-1): # (prev_path[i], prev_path[i+1]) の辺を消すO(N) for i in range(len(prev_path)-1): spur_node = prev_path[i] # O(M+N) edges = graphs[spur_node].edges new_graph = Graph(n) used_vetex_set = set(prev_path[:i]) # ここでprev_path[i],prev_path[i+1]の辺を消すだけで良い # prev_path[:i]に含まれる頂点も消したい? for j in range(len(edges)): edge = edges[j] if edge.from_idx == prev_path[i] and edge.to_idx == prev_path[i+1]: continue if edge.from_idx in used_vetex_set or edge.to_idx in used_vetex_set: continue new_graph.add_edge(edge) graphs[spur_node] = new_graph spur_d = Dijkstra(graphs[spur_node], spur_node) cost = d.ds[spur_node] + spur_d.ds[goal] i = prev_path.index(spur_node) spur_root = prev_path[:i] path = spur_root + spur_d.restore(goal) if path in used_path: continue heapq.heappush(pq, (cost, path)) used_path.append(path) if not pq: break cost, path = heapq.heappop(pq) self.dists.append(cost) self.shortest_paths.append(path) prev_path = path def main(): N,M,K = map(int,input().split()) X,Y = map(int,input().split()) X -= 1 # to 0-indexed Y -= 1 # to 0-indexed points = [Point() for _ in range(N)] for i in range(N): p, q = map(int, input().split()) points[i] = Point(x=p, y=q) graph = Graph(N) for i in range(M): P, Q = map(int, input().split()) P -= 1 # to 0-indexed Q -= 1 # to 0-indexed dist = distance_pp(points[P], points[Q]) graph.add_edge(Edge(P, Q, dist)) graph.add_edge(Edge(Q, P, dist)) ksp = KthShortestPath(graph, X, Y, K) for i in range(K): ans = -1 if i < len(ksp.dists): ans = ksp.dists[i] if ans >= ksp.inf: ans = -1 print(f"{ans:.6f}") if __name__ == "__main__": main()