結果
問題 | No.2000 Distanced Characters |
ユーザー |
![]() |
提出日時 | 2022-07-08 21:27:29 |
言語 | C++17(clang) (17.0.6 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 7 ms / 2,000 ms |
コード長 | 39,244 bytes |
コンパイル時間 | 3,641 ms |
コンパイル使用メモリ | 175,232 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-28 03:56:43 |
合計ジャッジ時間 | 4,524 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 13 |
コンパイルメッセージ
main.cpp:472:22: warning: uninitialized variable in a constexpr function is a C++20 extension [-Wc++20-extensions] 472 | uint64_t t; | ^ main.cpp:591:22: warning: uninitialized variable in a constexpr function is a C++20 extension [-Wc++20-extensions] 591 | uint64_t t; | ^ main.cpp:862:31: warning: unqualified call to 'std::move' [-Wunqualified-std-cast-call] 862 | auto c2 = convolution(move(a2), move(b2)); | ^ | std:: main.cpp:890:19: note: in instantiation of function template specialization 'atcoder::convolution<754974721U, long long, nullptr>' requested here 890 | auto c1 = convolution<MOD1>(a, b); | ^ main.cpp:862:41: warning: unqualified call to 'std::move' [-Wunqualified-std-cast-call] 862 | auto c2 = convolution(move(a2), move(b2)); | ^ | std:: main.cpp:862:31: warning: unqualified call to 'std::move' [-Wunqualified-std-cast-call] 862 | auto c2 = convolution(move(a2), move(b2)); | ^ | std:: main.cpp:891:19: note: in instantiation of function template specialization 'atcoder::convolution<167772161U, long long, nullptr>' requested here 891 | auto c2 = convolution<MOD2>(a, b); | ^ main.cpp:862:41: warning: unqualified call to 'std::move' [-Wunqualified-std-cast-call] 862 | auto c2 = convolution(move(a2), move(b2)); | ^ | std:: main.cpp:862:31: warning: unqualified call to 'std::move' [-Wunqualified-std-cast-call] 862 | auto c2 = convolution(move(a2), move(b2)); | ^ | std::
ソースコード
#include <bits/stdc++.h>using namespace std;#define ll long long#define rep(i,n) for(int (i)=0;(i)<(n);(i)++)#define rrep(i,n) for(int (i)=(n)-1;(i)>=0;(i)--)#define rrep2(i,n,k) for(int (i)=(n)-1;(i)>=(n)-(k);(i)--)#define vll(n,i) vector<long long>(n,i)#define v2ll(n,m,i) vector<vector<long long>>(n,vll(m,i))#define v3ll(n,m,k,i) vector<vector<vector<long long>>>(n,v2ll(m,k,i))#define v4ll(n,m,k,l,i) vector<vector<vector<vector<long long>>>>(n,v3ll(m,k,l,i))#define all(v) v.begin(),v.end()#define chmin(k,m) k = min(k,m)#define chmax(k,m) k = max(k,m)#define Pr pair<ll,ll>#define Tp tuple<ll,ll,ll>#define riano_ std::ios::sync_with_stdio(false);std::cin.tie(nullptr)#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")//ACL internal_math/type_traits/bitnamespace atcoder {namespace internal {// @param m `1 <= m`// @return x mod mconstexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}// Fast modular multiplication by barrett reduction// Reference: https://en.wikipedia.org/wiki/Barrett_reduction// NOTE: reconsider after Ice Lakestruct barrett {unsigned int _m;unsigned long long im;// @param m `1 <= m < 2^31`explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}// @return munsigned int umod() const { return _m; }// @param a `0 <= a < m`// @param b `0 <= b < m`// @return `a * b % m`unsigned int mul(unsigned int a, unsigned int b) const {// [1] m = 1// a = b = im = 0, so okay// [2] m >= 2// im = ceil(2^64 / m)// -> im * m = 2^64 + r (0 <= r < m)// let z = a*b = c*m + d (0 <= c, d < m)// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2// ((ab * im) >> 64) == c or c + 1unsigned long long z = a;z *= b;#ifdef _MSC_VERunsigned long long x;_umul128(z, im, &x);#elseunsigned long long x =(unsigned long long)(((unsigned __int128)(z)*im) >> 64);#endifunsigned int v = (unsigned int)(z - x * _m);if (_m <= v) v += _m;return v;}};// @param n `0 <= n`// @param m `1 <= m`// @return `(x ** n) % m`constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}// Reference:// M. Forisek and J. Jancina,// Fast Primality Testing for Integers That Fit into a Machine Word// @param n `0 <= n`constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;constexpr long long bases[3] = {2, 7, 61};for (long long a : bases) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n);// @param b `1 <= b`// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/gconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};// Contracts:// [1] s - m0 * a = 0 (mod b)// [2] t - m1 * a = 0 (mod b)// [3] s * |m1| + t * |m0| <= blong long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b// [3]:// (s - t * u) * |m1| + t * |m0 - m1 * u|// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)// = s * |m1| + t * |m0| <= bauto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}// by [3]: |m0| <= b/g// by g != b: |m0| < b/gif (m0 < 0) m0 += b / s;return {s, m0};}// Compile time primitive root// @param m must be prime// @return primitive root (and minimum in now)constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}template <int m> constexpr int primitive_root = primitive_root_constexpr(m);// @param n `n < 2^32`// @param m `1 <= m < 2^32`// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)unsigned long long floor_sum_unsigned(unsigned long long n,unsigned long long m,unsigned long long a,unsigned long long b) {unsigned long long ans = 0;while (true) {if (a >= m) {ans += n * (n - 1) / 2 * (a / m);a %= m;}if (b >= m) {ans += n * (b / m);b %= m;}unsigned long long y_max = a * n + b;if (y_max < m) break;// y_max < m * (n + 1)// floor(y_max / m) <= nn = (unsigned long long)(y_max / m);b = (unsigned long long)(y_max % m);std::swap(m, a);}return ans;}} // namespace internal} // namespace atcodernamespace atcoder {namespace internal {#ifndef _MSC_VERtemplate <class T>using is_signed_int128 =typename std::conditional<std::is_same<T, __int128_t>::value ||std::is_same<T, __int128>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int128 =typename std::conditional<std::is_same<T, __uint128_t>::value ||std::is_same<T, unsigned __int128>::value,std::true_type,std::false_type>::type;template <class T>using make_unsigned_int128 =typename std::conditional<std::is_same<T, __int128_t>::value,__uint128_t,unsigned __int128>;template <class T>using is_integral = typename std::conditional<std::is_integral<T>::value ||is_signed_int128<T>::value ||is_unsigned_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using is_signed_int = typename std::conditional<(is_integral<T>::value &&std::is_signed<T>::value) ||is_signed_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<(is_integral<T>::value &&std::is_unsigned<T>::value) ||is_unsigned_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int128<T>::value,make_unsigned_int128<T>,typename std::conditional<std::is_signed<T>::value,std::make_unsigned<T>,std::common_type<T>>::type>::type;#elsetemplate <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;#endiftemplate <class T>using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T>using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;} // namespace internal} // namespace atcodernamespace atcoder {namespace internal {// @param n `0 <= n`// @return minimum non-negative `x` s.t. `n <= 2**x`int ceil_pow2(int n) {int x = 0;while ((1U << x) < (unsigned int)(n)) x++;return x;}// @param n `1 <= n`// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`constexpr int bsf_constexpr(unsigned int n) {int x = 0;while (!(n & (1 << x))) x++;return x;}// @param n `1 <= n`// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`int bsf(unsigned int n) {#ifdef _MSC_VERunsigned long index;_BitScanForward(&index, n);return index;#elsereturn __builtin_ctz(n);#endif}} // namespace internal} // namespace atcoder//ACL modintnamespace atcoder {namespace internal {struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internaltemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>struct static_modint : internal::static_modint_base {using mint = static_modint;public:static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}friend constexpr ostream &operator<<(ostream& os,const mint &x) noexcept{return os<<(x._v);}friend constexpr istream &operator>>(istream& is,mint& x) noexcept{uint64_t t;is>>t,x=mint(t);return is;}private:unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;};template <int id> struct dynamic_modint : internal::modint_base {using mint = dynamic_modint;public:static int mod() { return (int)(bt.umod()); }static void set_mod(int m) {assert(1 <= m);bt = internal::barrett(m);}static mint raw(int v) {mint x;x._v = v;return x;}dynamic_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>dynamic_modint(T v) {long long x = (long long)(v % (long long)(mod()));if (x < 0) x += mod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>dynamic_modint(T v) {_v = (unsigned int)(v % mod());}unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v += mod() - rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator*=(const mint& rhs) {_v = bt.mul(_v, rhs._v);return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {auto eg = internal::inv_gcd(_v, mod());assert(eg.first == 1);return eg.second;}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}friend constexpr ostream &operator<<(ostream& os,const mint &x) noexcept{return os<<(x._v);}friend constexpr istream &operator>>(istream& is,mint& x) noexcept{uint64_t t;is>>t,x=mint(t);return is;}private:unsigned int _v;static internal::barrett bt;static unsigned int umod() { return bt.umod(); }};template <int id> internal::barrett dynamic_modint<id>::bt(998244353);using modint = dynamic_modint<-1>;namespace internal {template <class T>using is_static_modint = std::is_base_of<internal::static_modint_base, T>;template <class T>using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;template <class> struct is_dynamic_modint : public std::false_type {};template <int id>struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};template <class T>using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;} // namespace internal} // namespace atcoder//ACL convolutionnamespace atcoder {namespace internal {template <class mint,int g = internal::primitive_root<mint::mod()>,internal::is_static_modint_t<mint>* = nullptr>struct fft_info {static constexpr int rank2 = bsf_constexpr(mint::mod() - 1);std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;fft_info() {root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);iroot[rank2] = root[rank2].inv();for (int i = rank2 - 1; i >= 0; i--) {root[i] = root[i + 1] * root[i + 1];iroot[i] = iroot[i + 1] * iroot[i + 1];}{mint prod = 1, iprod = 1;for (int i = 0; i <= rank2 - 2; i++) {rate2[i] = root[i + 2] * prod;irate2[i] = iroot[i + 2] * iprod;prod *= iroot[i + 2];iprod *= root[i + 2];}}{mint prod = 1, iprod = 1;for (int i = 0; i <= rank2 - 3; i++) {rate3[i] = root[i + 3] * prod;irate3[i] = iroot[i + 3] * iprod;prod *= iroot[i + 3];iprod *= root[i + 3];}}}};template <class mint, internal::is_static_modint_t<mint>* = nullptr>void butterfly(std::vector<mint>& a) {int n = int(a.size());int h = internal::ceil_pow2(n);static const fft_info<mint> info;int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformedwhile (len < h) {if (h - len == 1) {int p = 1 << (h - len - 1);mint rot = 1;for (int s = 0; s < (1 << len); s++) {int offset = s << (h - len);for (int i = 0; i < p; i++) {auto l = a[i + offset];auto r = a[i + offset + p] * rot;a[i + offset] = l + r;a[i + offset + p] = l - r;}if (s + 1 != (1 << len))rot *= info.rate2[bsf(~(unsigned int)(s))];}len++;} else {// 4-baseint p = 1 << (h - len - 2);mint rot = 1, imag = info.root[2];for (int s = 0; s < (1 << len); s++) {mint rot2 = rot * rot;mint rot3 = rot2 * rot;int offset = s << (h - len);for (int i = 0; i < p; i++) {auto mod2 = 1ULL * mint::mod() * mint::mod();auto a0 = 1ULL * a[i + offset].val();auto a1 = 1ULL * a[i + offset + p].val() * rot.val();auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();auto a1na3imag =1ULL * mint(a1 + mod2 - a3).val() * imag.val();auto na2 = mod2 - a2;a[i + offset] = a0 + a2 + a1 + a3;a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));a[i + offset + 2 * p] = a0 + na2 + a1na3imag;a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);}if (s + 1 != (1 << len))rot *= info.rate3[bsf(~(unsigned int)(s))];}len += 2;}}}template <class mint, internal::is_static_modint_t<mint>* = nullptr>void butterfly_inv(std::vector<mint>& a) {int n = int(a.size());int h = internal::ceil_pow2(n);static const fft_info<mint> info;int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformedwhile (len) {if (len == 1) {int p = 1 << (h - len);mint irot = 1;for (int s = 0; s < (1 << (len - 1)); s++) {int offset = s << (h - len + 1);for (int i = 0; i < p; i++) {auto l = a[i + offset];auto r = a[i + offset + p];a[i + offset] = l + r;a[i + offset + p] =(unsigned long long)(mint::mod() + l.val() - r.val()) *irot.val();;}if (s + 1 != (1 << (len - 1)))irot *= info.irate2[bsf(~(unsigned int)(s))];}len--;} else {// 4-baseint p = 1 << (h - len);mint irot = 1, iimag = info.iroot[2];for (int s = 0; s < (1 << (len - 2)); s++) {mint irot2 = irot * irot;mint irot3 = irot2 * irot;int offset = s << (h - len + 2);for (int i = 0; i < p; i++) {auto a0 = 1ULL * a[i + offset + 0 * p].val();auto a1 = 1ULL * a[i + offset + 1 * p].val();auto a2 = 1ULL * a[i + offset + 2 * p].val();auto a3 = 1ULL * a[i + offset + 3 * p].val();auto a2na3iimag =1ULL *mint((mint::mod() + a2 - a3) * iimag.val()).val();a[i + offset] = a0 + a1 + a2 + a3;a[i + offset + 1 * p] =(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();a[i + offset + 2 * p] =(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *irot2.val();a[i + offset + 3 * p] =(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *irot3.val();}if (s + 1 != (1 << (len - 2)))irot *= info.irate3[bsf(~(unsigned int)(s))];}len -= 2;}}}template <class mint, internal::is_static_modint_t<mint>* = nullptr>std::vector<mint> convolution_naive(const std::vector<mint>& a,const std::vector<mint>& b) {int n = int(a.size()), m = int(b.size());std::vector<mint> ans(n + m - 1);if (n < m) {for (int j = 0; j < m; j++) {for (int i = 0; i < n; i++) {ans[i + j] += a[i] * b[j];}}} else {for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {ans[i + j] += a[i] * b[j];}}}return ans;}template <class mint, internal::is_static_modint_t<mint>* = nullptr>std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {int n = int(a.size()), m = int(b.size());int z = 1 << internal::ceil_pow2(n + m - 1);a.resize(z);internal::butterfly(a);b.resize(z);internal::butterfly(b);for (int i = 0; i < z; i++) {a[i] *= b[i];}internal::butterfly_inv(a);a.resize(n + m - 1);mint iz = mint(z).inv();for (int i = 0; i < n + m - 1; i++) a[i] *= iz;return a;}} // namespace internaltemplate <class mint, internal::is_static_modint_t<mint>* = nullptr>std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {int n = int(a.size()), m = int(b.size());if (!n || !m) return {};if (std::min(n, m) <= 60) return convolution_naive(a, b);return internal::convolution_fft(a, b);}template <class mint, internal::is_static_modint_t<mint>* = nullptr>std::vector<mint> convolution(const std::vector<mint>& a,const std::vector<mint>& b) {int n = int(a.size()), m = int(b.size());if (!n || !m) return {};if (std::min(n, m) <= 60) return convolution_naive(a, b);return internal::convolution_fft(a, b);}template <unsigned int mod = 998244353,class T,std::enable_if_t<internal::is_integral<T>::value>* = nullptr>std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {int n = int(a.size()), m = int(b.size());if (!n || !m) return {};using mint = static_modint<mod>;std::vector<mint> a2(n), b2(m);for (int i = 0; i < n; i++) {a2[i] = mint(a[i]);}for (int i = 0; i < m; i++) {b2[i] = mint(b[i]);}auto c2 = convolution(move(a2), move(b2));std::vector<T> c(n + m - 1);for (int i = 0; i < n + m - 1; i++) {c[i] = c2[i].val();}return c;}std::vector<long long> convolution_ll(const std::vector<long long>& a,const std::vector<long long>& b) {int n = int(a.size()), m = int(b.size());if (!n || !m) return {};static constexpr unsigned long long MOD1 = 754974721; // 2^24static constexpr unsigned long long MOD2 = 167772161; // 2^25static constexpr unsigned long long MOD3 = 469762049; // 2^26static constexpr unsigned long long M2M3 = MOD2 * MOD3;static constexpr unsigned long long M1M3 = MOD1 * MOD3;static constexpr unsigned long long M1M2 = MOD1 * MOD2;static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;static constexpr unsigned long long i1 =internal::inv_gcd(MOD2 * MOD3, MOD1).second;static constexpr unsigned long long i2 =internal::inv_gcd(MOD1 * MOD3, MOD2).second;static constexpr unsigned long long i3 =internal::inv_gcd(MOD1 * MOD2, MOD3).second;auto c1 = convolution<MOD1>(a, b);auto c2 = convolution<MOD2>(a, b);auto c3 = convolution<MOD3>(a, b);std::vector<long long> c(n + m - 1);for (int i = 0; i < n + m - 1; i++) {unsigned long long x = 0;x += (c1[i] * i1) % MOD1 * M2M3;x += (c2[i] * i2) % MOD2 * M1M3;x += (c3[i] * i3) % MOD3 * M1M2;// B = 2^63, -B <= x, r(real value) < B// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)// r = c1[i] (mod MOD1)// focus on MOD1// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)// r = x,// x - M' + (0 or 2B),// x - 2M' + (0, 2B or 4B),// x - 3M' + (0, 2B, 4B or 6B) (without mod!)// (r - x) = 0, (0)// - M' + (0 or 2B), (1)// -2M' + (0 or 2B or 4B), (2)// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)// we checked that// ((1) mod MOD1) mod 5 = 2// ((2) mod MOD1) mod 5 = 3// ((3) mod MOD1) mod 5 = 4long long diff =c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));if (diff < 0) diff += MOD1;static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};x -= offset[diff % 5];c[i] = x;}return c;}} // namespace atcoder//ACL lazy_segtreenamespace atcoder {template <class S,S (*op)(S, S),S (*e)(),class F,S (*mapping)(F, S),F (*composition)(F, F),F (*id)()>struct lazy_segtree {public:lazy_segtree() : lazy_segtree(0) {}lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {log = internal::ceil_pow2(_n);size = 1 << log;d = std::vector<S>(2 * size, e());lz = std::vector<F>(size, id());for (int i = 0; i < _n; i++) d[size + i] = v[i];for (int i = size - 1; i >= 1; i--) {update(i);}}void set(int p, S x) {assert(0 <= p && p < _n);p += size;for (int i = log; i >= 1; i--) push(p >> i);d[p] = x;for (int i = 1; i <= log; i++) update(p >> i);}S get(int p) {assert(0 <= p && p < _n);p += size;for (int i = log; i >= 1; i--) push(p >> i);return d[p];}S prod(int l, int r) {assert(0 <= l && l <= r && r <= _n);if (l == r) return e();l += size;r += size;for (int i = log; i >= 1; i--) {if (((l >> i) << i) != l) push(l >> i);if (((r >> i) << i) != r) push(r >> i);}S sml = e(), smr = e();while (l < r) {if (l & 1) sml = op(sml, d[l++]);if (r & 1) smr = op(d[--r], smr);l >>= 1;r >>= 1;}return op(sml, smr);}S all_prod() { return d[1]; }void apply(int p, F f) {assert(0 <= p && p < _n);p += size;for (int i = log; i >= 1; i--) push(p >> i);d[p] = mapping(f, d[p]);for (int i = 1; i <= log; i++) update(p >> i);}void apply(int l, int r, F f) {assert(0 <= l && l <= r && r <= _n);if (l == r) return;l += size;r += size;for (int i = log; i >= 1; i--) {if (((l >> i) << i) != l) push(l >> i);if (((r >> i) << i) != r) push((r - 1) >> i);}{int l2 = l, r2 = r;while (l < r) {if (l & 1) all_apply(l++, f);if (r & 1) all_apply(--r, f);l >>= 1;r >>= 1;}l = l2;r = r2;}for (int i = 1; i <= log; i++) {if (((l >> i) << i) != l) update(l >> i);if (((r >> i) << i) != r) update((r - 1) >> i);}}template <bool (*g)(S)> int max_right(int l) {return max_right(l, [](S x) { return g(x); });}template <class G> int max_right(int l, G g) {assert(0 <= l && l <= _n);assert(g(e()));if (l == _n) return _n;l += size;for (int i = log; i >= 1; i--) push(l >> i);S sm = e();do {while (l % 2 == 0) l >>= 1;if (!g(op(sm, d[l]))) {while (l < size) {push(l);l = (2 * l);if (g(op(sm, d[l]))) {sm = op(sm, d[l]);l++;}}return l - size;}sm = op(sm, d[l]);l++;} while ((l & -l) != l);return _n;}template <bool (*g)(S)> int min_left(int r) {return min_left(r, [](S x) { return g(x); });}template <class G> int min_left(int r, G g) {assert(0 <= r && r <= _n);assert(g(e()));if (r == 0) return 0;r += size;for (int i = log; i >= 1; i--) push((r - 1) >> i);S sm = e();do {r--;while (r > 1 && (r % 2)) r >>= 1;if (!g(op(d[r], sm))) {while (r < size) {push(r);r = (2 * r + 1);if (g(op(d[r], sm))) {sm = op(d[r], sm);r--;}}return r + 1 - size;}sm = op(d[r], sm);} while ((r & -r) != r);return 0;}private:int _n, size, log;std::vector<S> d;std::vector<F> lz;void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }void all_apply(int k, F f) {d[k] = mapping(f, d[k]);if (k < size) lz[k] = composition(f, lz[k]);}void push(int k) {all_apply(2 * k, lz[k]);all_apply(2 * k + 1, lz[k]);lz[k] = id();}};} // namespace atcoderusing namespace atcoder;#define mint static_modint<mod>#define vm(n,i) vector<mint>(n,i)#define v2m(n,m,i) vector<vector<mint>>(n,vm(m,i))#define v3m(n,m,k,i) vector<vector<vector<mint>>>(n,v2m(m,k,i))#define v4m(n,m,k,l,i) vector<vector<vector<vector<mint>>>>(n,v3m(m,k,l,i))//vector outputtemplate <typename T>void out(vector<T> &v){for(T x:v) cout << x << " ";cout << "\n"; return;}//Graphstruct graph {long long N;vector<vector<tuple<long long,long long,int>>> G;vector<long long> par_v;vector<long long> par_e;int edge_count = 0;graph(long long n) {N = n;G = vector<vector<tuple<long long,long long,int>>>(N);par_v = vector<long long>(N,-1);par_e = vector<long long>(N,-1);}graph(long long n,long long m,bool weighted = false,bool directed = false) {N = n;G = vector<vector<tuple<long long,long long,int>>>(N);par_v = vector<long long>(N,-1);par_e = vector<long long>(N,-1);for(int i=0;i<m;i++){long long a,b,c; cin >> a >> b;if(weighted) cin >> c;else c = 1;unite(a,b,c,directed);}}void unite(long long a,long long b,long long cost = 1,bool directed = false){G[a].emplace_back(b,cost,edge_count);if(!directed) G[b].emplace_back(a,cost,edge_count);edge_count++;}};//map addtemplate <typename T>void add(map<T,ll> &cnt,T a,ll n = 1){if(cnt.count(a)) cnt[a] += n;else cnt[a] = n;}const ll mod = 998244353;int main(){riano_; ll ans = 0;string S; cin >> S;ll d[26][26];rep(i,26){rep(j,26) cin >> d[i][j];}vector<ll> l(26,-2e9);char a[26][26];rep(i,26){rep(j,26) a[i][j] = 'Y';}rep(i,S.size()){ll k = S[i]-'a';rep(j,26){if((ll)(i)-l[j]<d[j][k]) a[j][k] = 'N';}l[k] = i;}rep(i,26){rep(j,26){cout << a[i][j] << " ";}cout << endl;}//cout << ans << endl;}