結果
| 問題 | No.2005 Sum of Power Sums |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-07-08 23:45:32 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 17,401 bytes |
| 記録 | |
| コンパイル時間 | 5,440 ms |
| コンパイル使用メモリ | 303,048 KB |
| 最終ジャッジ日時 | 2025-01-30 05:37:24 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 3 |
| other | AC * 3 WA * 13 TLE * 2 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:886:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
886 | scanf("%d",&k);
| ~~~~~^~~~~~~~~
ソースコード
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
namespace ttl{
using namespace std;
using f80=long double;
using i64=int64_t;
using u64=uint64_t;
template<typename T> void Scan_(T& a){
cin>>a;
}
template<typename T,typename U> void Scan_(pair<T,U>& a){
Scan_(a.first),Scan_(a.second);
}
template<typename T> void Scan_(vector<T>& a){
for(auto& v:a){
Scan_(v);
}
}
template<typename T> void Scan_(vector<vector<T>>& a){
for(auto& v:a){
for(auto& u:v){
Scan_(u);
}
}
}
void Scan(){}
template<typename T,class... Args> void Scan(T& n,Args&... args){
Scan_(n),Scan(args...);
}
template<typename T> void Print_(T a){
cout<<a;
}
template<typename T,typename U> void Print_(pair<T,U> a){
Print_(a.first),cout<<" ";Print_(a.second);
}
void Print_(f80 a){
printf("%.10Lf",a);
}
template<typename T> void Print(vector<T> a){
for(size_t i=0;i<a.size();++i){
Print_(a[i]);
cout<<" \n"[i==a.size()-1];
}
}
template<typename T> void Print(vector<vector<T>> a){
for(auto& v:a){
for(size_t i=0;i<v.size();++i){
Print_(v[i]);
cout<<" \n"[i==v.size()-1];
}
}
}
template<typename T> void Print(T a){
Print_(a);
cout<<"\n";
}
template<typename T,class... Args> void Print(T a,Args... args){
Print_(a),cout<<" ",Print(args...);
}
//しおむすびありがとう
template<class Head,class... Tail> struct MultiDimVec{
using type=vector<typename MultiDimVec<Tail...>::type>;
};
template<class T> struct MultiDimVec<T>{
using type=T;
};
template<class T,class Arg> vector<T> MakeVec(int n,Arg&& arg){
return vector<T>(n,arg);
}
template<class T,class... Args> typename MultiDimVec<Args...,T>::type MakeVec(int n,Args&&... args){
return typename MultiDimVec<Args...,T>::type(n,MakeVec<T>(args...));
}
template<typename T> T Sum(vector<T> a){
return accumulate(a.begin(),a.end(),T(0));
}
template<typename T> T Rev_(T a){
reverse(a.begin(),a.end());
return a;
}
template<typename T> void Rev(T& a){
reverse(a.begin(),a.end());
}
template<typename T> T Sort_(T a){
sort(a.begin(),a.end());
return a;
}
template<typename T> void Sort(T& a){
sort(a.begin(),a.end());
}
template<typename T> T RSort_(T a){
sort(a.rbegin(),a.rend());
return a;
}
template<typename T> void RSort(T& a){
sort(a.rbegin(),a.rend());
}
template<typename T> T Max(vector<T> a){
return *max_element(a.begin(),a.end());
}
template<typename T> T Min(vector<T> a){
return *min_element(a.begin(),a.end());
}
template<typename T> void ChMax(T& a,T b){
a=max(a,b);
}
template<typename T> void ChMin(T& a,T b){
a=min(a,b);
}
i64 Tr(i64 n){
return n*(n+1)/2;
}
i64 PopCnt(u64 k){
return __builtin_popcountll(k);
}
i64 SqrtF(i64 n){
i64 ok=0,ng=1e9+5;
while(std::abs(ok-ng)>1){
i64 mid=(ok+ng)/2;
(mid*mid<=n?ok:ng)=mid;
}
return ok;
}
i64 FDiv(i64 a,i64 b){
if(b<0){
a*=-1,b*=-1;
}
if(a<0){
return -(-a+b-1)/b;
}
return a/b;
}
i64 CDiv(i64 a,i64 b){
if(b<0){
a*=-1,b*=-1;
}
if(a<0){
return -(-a)/b;
}
return (a+b-1)/b;
}
vector<i64> LISSize(vector<i64> A){
int N=A.size();
vector<i64> dp(N+1,2e18),res(N+1);
dp[0]=-1;
for(int i=0;i<N;++i){
auto j=(lower_bound(dp.begin(),dp.end(),A[i])-dp.begin())-1;
dp[j+1]=A[i];
res[i+1]=max(res[i],i64(j+1));
}
return res;
}
#if __has_include(<atcoder/all>)
i64 CountInverse(vector<i64> A){
int N=A.size();
auto B=A;
sort(B.begin(),B.end());
B.erase(unique(B.begin(),B.end()),B.end());
map<i64,i64> mp;
for(size_t i=0;i<B.size();++i){
mp[B[i]]=i;
}
for(int i=0;i<N;++i){
A[i]=mp[A[i]];
}
atcoder::fenwick_tree<i64> fwt(N);
i64 ans=0;
for(int i=0;i<N;++i){
fwt.add(A[i],1);
ans+=fwt.sum(A[i]+1,N);
}
return ans;
}
#endif
struct ESieve{
int n;
vector<i64> lpf;
ESieve(int n_):n(n_),lpf(n_+1,-1){
for(i64 p=2;p<=n;++p){
if(lpf[p]!=-1){
continue;
}
for(i64 q=p;q<=n;q+=p){
if(lpf[q]==-1){
lpf[q]=p;
}
}
}
}
vector<pair<i64,i64>> operator()(int m){
vector<i64> v;
while(m!=1){
v.emplace_back(lpf[m]);
m/=lpf[m];
}
if(v.size()==0){
return {};
}
vector<pair<i64,i64>> res;
res.emplace_back(v[0],1);
for(size_t i=1;i<v.size();++i){
if(v[i-1]!=v[i]){
res.emplace_back(v[i],1);
}
else{
res.back().second++;
}
}
return res;
}
};
vector<int> Dist(vector<vector<int>> G,int v){
int N=G.size();
vector<int> dst(N,-1);
queue<int> q;
dst[v]=0;
q.emplace(v);
while(q.size()){
int t=q.front();
q.pop();
for(auto u:G[t]){
if(dst[u]==-1){
dst[u]=dst[t]+1;
q.emplace(u);
}
}
}
return dst;
}
void SpreadGrid(vector<string>& S,int h,int w,char c){
int H=S.size(),W=S[0].size();
auto res=MakeVec<string>(h,"");
for(int i=0;i<h;++i){
for(int j=0;j<w;++j){
if(i<H && j<W){
res[i]+=S[i][j];
}
else{
res[i]+=c;
}
}
}
S=res;
}
bool CheckPrime(i64 n){
if(n<2){
return 0;
}
for(i64 i=2;i*i<=n;++i){
if(n%i==0){
return 0;
}
}
return 1;
}
vector<pair<i64,i64>> PrimeFact(i64 n){
vector<pair<i64,i64>> res;
for(i64 i=2;i*i<=n;++i){
if(n%i!=0){
continue;
}
i64 ex=0;
while(n%i==0){
ex++,n/=i;
}
res.emplace_back(i,ex);
}
if(n!=1){
res.emplace_back(n,1);
}
return res;
}
vector<i64> EnumDiv(i64 n){
vector<i64> res;
for(i64 i=1;i*i<=n;++i){
if(n%i!=0){
continue;
}
res.emplace_back(i);
if(i*i!=n){
res.emplace_back(n/i);
}
}
sort(res.begin(),res.end());
return res;
}
template<typename T> vector<pair<T,i64>> RunLenEnc(vector<T> a){
int n=a.size();
vector<pair<T,i64>> res;
T now=a[0];
int l=1;
for(int i=1;i<n;++i){
if(a[i-1]==a[i]){
l++;
}
else{
res.emplace_back(now,l);
now=a[i],l=1;
}
}
res.emplace_back(now,l);
return res;
}
vector<pair<char,i64>> RunLenEnc(string a){
int n=a.size();
vector<pair<char,i64>> res;
char now=a[0];
int l=1;
for(int i=1;i<n;++i){
if(a[i-1]==a[i]){
l++;
}
else{
res.emplace_back(now,l);
now=a[i],l=1;
}
}
res.emplace_back(now,l);
return res;
}
template<typename T> struct Comb{
vector<T> fac,ifac;
Comb(int mx=3000000):fac(mx+1,1),ifac(mx+1,1){
for(int i=1;i<=mx;++i){
fac[i]=fac[i-1]*i;
}
ifac[mx]/=fac[mx];
for(int i=mx;i>0;--i){
ifac[i-1]=ifac[i]*i;
}
}
T operator()(int n,int k){
if(n<0||k<0||n<k){
return 0;
}
return fac[n]*ifac[k]*ifac[n-k];
}
};
}
using namespace ttl;
template<u64 mod> using ModInt=atcoder::static_modint<mod>;
template<u64 mod> struct FPS{
using mint=ModInt<mod>;
vector<mint> val;
FPS():val({0}){}
FPS(mint t):val({t}){}
FPS(int siz):val(max(1,siz)){}
FPS(initializer_list<mint> init):val(init){}
FPS(vector<mint> init):val(init){}
mint &operator[](int i){
return val[i];
}
int size(){
return val.size();
}
void resize(int siz){
val.resize(siz);
}
FPS& resize_(int siz){
auto tmp=val;
tmp.resize(siz);
return (*this)=tmp;
}
FPS operator-(){
for(mint& v:val){
v=mint(0)-v;
}
return (*this);
}
FPS& operator+=(mint rhs){
val[0]+=rhs;
return (*this);
}
FPS& operator-=(mint rhs){
val[0]-=rhs;
return (*this);
}
FPS& operator*=(mint rhs){
for(auto& v:val){
v*=rhs;
}
return (*this);
}
FPS& operator/=(mint rhs){
for(auto& v:val){
v/=rhs;
}
return (*this);
}
FPS operator+(mint rhs){
return FPS(*this)+=rhs;
}
FPS operator-(mint rhs){
return FPS(*this)-=rhs;
}
FPS operator*(mint rhs){
return FPS(*this)*=rhs;
}
FPS operator/(mint rhs){
return FPS(*this)/=rhs;
}
FPS& operator+=(FPS rhs){
resize(max(this->size(),rhs.size()));
for(int i=0;i<int(rhs.size());++i){
(*this)[i]+=rhs[i];
}
return (*this);
}
FPS& operator-=(FPS rhs){
resize(max(this->size(),rhs.size()));
for(int i=0;i<int(rhs.size());++i){
(*this)[i]-=rhs[i];
}
return (*this);
}
FPS& operator*=(FPS rhs){
val=atcoder::convolution(val,rhs.val);
return (*this);
}
FPS& operator/=(FPS rhs){
return (*this)*=rhs.inv();
}
FPS& operator>>=(int k){
if(int(val.size())<=k){
return (*this)={0};
}
FPS res=val;
res.val.erase(res.val.begin(),res.val.begin()+k);
return (*this)=res;
}
FPS& operator<<=(int k){
FPS res=val;
res.val.insert(res.val.begin(),k,mint(0));
return (*this)=res;
}
FPS operator+(FPS rhs){
return FPS(*this)+=rhs;
}
FPS operator-(FPS rhs){
return FPS(*this)-=rhs;
}
FPS operator*(FPS rhs){
return FPS(*this)*=rhs;
}
FPS operator/(FPS rhs){
return FPS(*this)/=rhs;
}
FPS operator%(FPS rhs){
return FPS(*this)%=rhs;
}
FPS operator<<(int k){
return FPS(*this)<<=k;
}
FPS operator>>(int k){
return FPS(*this)>>=k;
}
FPS shrink(){
for(int i=val.size()-1;i>0;--i){
if(val[i]==0){
val.pop_back();
}
else{
break;
}
}
return (*this);
}
FPS diff_(){
if(val.size()==1){
return (*this)={0};
}
FPS f(val.size()-1);
for(size_t i=1;i<val.size();++i){
f[i-1]=val[i]*i;
}
return f;
}
FPS integral_(){
FPS f(val.size()+1);
for(size_t i=0;i<val.size();++i){
f[i+1]=val[i]/(i+1);
}
return f;
}
FPS inv_(int mx=-1){
if(mx==-1){
mx=val.size();
}
if(val[0]==0){
assert(0);
}
FPS g({mint(1)/val[0]});
int now=1;
while(now<mx){
now<<=1;
FPS t=(*this);
t.resize(now);
t*=g;
t=-t+mint(2);
g*=t;
g.resize(now);
}
g.resize(mx);
return g;
}
FPS exp_(int mx=-1){
if(mx==-1){
mx=val.size();
}
if(val[0]!=0){
assert(0);
}
FPS g(mint(1));
int now=1;
while(now<mx){
now<<=1;
FPS t=(*this);
t.resize(now);
g*=t-g.log_(now)+mint(1);
g.resize(now);
}
g.resize(mx);
return g;
}
FPS log_(int mx=-1){
if(mx==-1){
mx=val.size();
}
if(val[0]!=1){
assert(0);
}
auto f=(*this);
f.resize(mx);
return (f.diff_()/f).integral_().resize_(mx);
}
FPS pow_(i64 k,int mx=-1){
if(mx==-1){
mx=val.size();
}
i64 t=0;
for(auto v:val){
if(v==0){
t++;
}
else{
break;
}
}
auto f=(*this)>>t;
if(f[0]==0){
f={0},f.resize(mx);
return f;
}
mint c=f[0];
f/=c;
(f.log(mx)*=mint(k)).exp(mx)*=(c.pow(k));
if(t*k<=mx){
f<<=t*k;
f.resize(mx);
return f;
}
else{
f={0},f.resize(mx);
return f;
}
}
FPS& diff(){
return (*this)=diff_();
}
FPS& integral(){
return (*this)=integral_();
}
FPS& inv(int mx=-1){
return (*this)=inv_(mx);
}
FPS& exp(int mx=-1){
return (*this)=exp_(mx);
}
FPS& log(int mx=-1){
return (*this)=log_(mx);
}
FPS& pow(i64 k,int mx=-1){
return (*this)=pow_(k,mx);
}
void TaylorShift(mint c){
Comb<mint> C(val.size());
vector<mint> g(val.size());
mint now=1;
for(size_t i=0;i<val.size();++i){
val[i]*=C.dat[i];
g[i]=now*C.idat[i];
now*=c;
}
reverse(val.begin(),val.end());
g=atcoder::convolution(val,g);
g.resize(val.size());
reverse(g.begin(),g.end());
for(size_t i=0;i<val.size();++i){
g[i]*=C.idat[i];
}
val=g;
}
};
template<u64 mod> struct Poly{
typedef ModInt<mod> mint;
vector<mint> val;
Poly():val({0}){}
Poly(mint t):val({t}){}
Poly(int siz):val(max(1,siz)){}
Poly(initializer_list<mint> init):val(init){}
Poly(vector<mint> init):val(init){}
mint &operator[](int i){
return val[i];
}
int size(){
return val.size();
}
void resize(int siz){
val.resize(siz);
}
void shrink(){
for(int i=val.size()-1;i>0;--i){
if(val[i]==0){
val.pop_back();
}
else{
return;
}
}
}
Poly operator+(Poly rhs){
return Poly(*this)+=rhs;
}
Poly operator-(Poly rhs){
return Poly(*this)-=rhs;
}
Poly operator*(Poly rhs){
return Poly(*this)*=rhs;
}
Poly operator/(Poly rhs){
return Poly(*this)/=rhs;
}
Poly operator%(Poly rhs){
return Poly(*this)%=rhs;
}
Poly operator-(){
for(mint& v:val){
v=mint(0)-v;
}
return (*this);
}
Poly operator+=(Poly rhs){
resize(max(this->size(),rhs.size()));
for(int i=0;i<int(rhs.size());++i){
(*this)[i]+=rhs[i];
}
shrink();
return (*this);
}
Poly operator-=(Poly rhs){
resize(max(this->size(),rhs.size()));
for(int i=0;i<int(rhs.size());++i){
(*this)[i]-=rhs[i];
}
shrink();
return (*this);
}
Poly operator*=(Poly rhs){
val=atcoder::convolution(val,rhs.val);
return (*this);
}
Poly operator/=(Poly rhs){
if(val.size()<rhs.size()){
val.resize(0);
return (*this);
}
int rsiz=val.size()-rhs.size()+1;
reverse(val.begin(),val.end());
reverse(rhs.val.begin(),rhs.val.end());
val.resize(rsiz),rhs.inv(rsiz);
(*this)*=rhs;
val.resize(rsiz);
reverse(val.begin(),val.end());
return (*this);
}
Poly operator%=(Poly rhs){
if(val.size()<rhs.size()){
return (*this);
}
(*this)-=(*this)/rhs*rhs;
val.resize(rhs.size()-1);
shrink();
return (*this);
}
mint eval(mint a){
mint t=1,res=0;
int n=(*this).size();
for(int i=0;i<n;++i){
res+=val[i]*t;
t*=a;
}
return res;
}
void diffrent(){
Poly f(val.size()-1);
for(int i=1;i<val.size();++i){
f[i-1]=val[i]*i;
}
(*this)=f;
}
void integral(){
Poly f(val.size()+1);
for(int i=0;i<val.size();++i){
f[i+1]=val[i]/(i+1);
}
(*this)=f;
}
void inv(int mx){
Poly g({mint(1)/val[0]});
int now=1;
while(now<mx){
now<<=1;
Poly t=(*this);
t.resize(now);
t*=g,t=-t;
t[0]+=2,g*=t;
g.resize(now);
}
g.resize(mx);
(*this)=g;
}
vector<mint> MultiEval(int K){
int siz=1;
while(siz<K){
siz<<=1;
}
vector<Poly> t(siz*2-1,{1});
for(int i=0;i<=K;++i){
t[i+siz-1]={-i,1};
}
for(int i=siz-2;i>=0;--i){
t[i]=t[2*i+1]*t[2*i+2];
}
vector<Poly> g(siz*2-1);
g[0]=(*this)%t[0];
for(int i=1;i<siz*2-1;++i){
g[i]=g[(i-1)/2]%t[i];
}
vector<mint> res(K+1);
for(int i=0;i<=K;++i){
res[i]=g[i+siz-1][0];
}
return res;
}
void LagrangeInterpolation(vector<mint> x,vector<mint> y){
int N=x.size();
vector<Poly> h(N);
for(int i=0;i<N;++i){
h[i]={-x[i],1};
}
auto g=Product(h);
Poly<mod> g_=g;
g_.diffrent();
vector<mint> t=g_.MultiEval(x);
for(int i=0;i<N;++i){
t[i]=y[i]/t[i];
}
vector<Poly<mod>> den(2*N-1),num(2*N-1,{1});
for(int i=0;i<N;++i){
den[i+N-1]={-x[i],1};
num[i+N-1]={t[i]};
}
for(int i=N-2;i>=0;--i){
den[i]=den[2*i+1]*den[2*i+2];
num[i]=num[2*i+1]*den[2*i+2]+num[2*i+2]*den[2*i+1];
}
(*this)=num[0];
}
};
template<typename T> T Product(vector<T> a){
int siz=1;
while(siz<int(a.size())){
siz<<=1;
}
vector<T> res(siz*2-1,{1});
for(int i=0;i<int(a.size());++i){
res[i+siz-1]=a[i];
}
for(int i=siz-2;i>=0;--i){
res[i]=res[2*i+1]*res[2*i+2];
}
return res[0];
}
template<u64 mod> vector<ModInt<mod>> StirlingNumber2(int N){
typedef ModInt<mod> mint;
FPS<mod> f(N+1),g(N+1);
mint fact=1;
for(int i=0;i<=N;++i){
f[i]=(mint(i).pow(N))/fact;
g[i]=(mint(-1).pow(i))/fact;
fact*=i+1;
}
f*=g;
vector<mint> res(N+1);
for(int i=0;i<=N;++i){
res[i]=f[i];
}
return res;
}
template<typename mint> mint lagrange(vector<mint> A,int N,mint T){
if(T.val()<=N){
return A[T.val()];
}
vector<mint> Q_i(N+1,1);
for(int i=1;i<=N;++i){
Q_i[0]*=-i;
}
for(int i=1;i<=N;++i){
Q_i[i]=Q_i[i-1]/(i-N-1)*i;
}
vector<mint> c(N+1);
for(int i=0;i<=N;++i){
c[i]=A[i]/Q_i[i];
}
mint prod=1;
for(int i=0;i<=N;++i){
prod*=T-i;
}
mint res=0;
for(int i=0;i<=N;++i){
res+=c[i]*prod/(T-i);
}
return res;
}
int main(){
constexpr u64 mod=998244353;
using mint=ModInt<mod>;
Comb<ModInt<998244353>> Cb;
//f := sum[j=1,5000] cnt[j]*(M-x)^j
//h(x) := sum[i=0,x] Cb(N-1+i,i)*f(i) は deg(f)+N 次多項式である
//すべての k=0,1,...,deg(f)+N について h(k) がわかればよい
//すべての k=0,1,...,deg(f)+N について g(k)=Cb(N-1+k,k)*f(k) がわかればよい
//多点評価
i64 N,M;
Scan(N,M);
vector<int> cnt(5001);
for(int i=0;i<N;++i){
int k;
scanf("%d",&k);
cnt[k]++;
}
Poly<mod> f,g={M,-1};
for(int i=1;i<=5000;++i){
f+=g*cnt[i];
Poly<mod> g_(g.size()+1);
for(int j=0;j<g.size();++j){
g_[j]+=g[j]*M;
g_[j+1]-=g[j];
}
g=g_;
}
vector<Poly<mod>> J(N);
J[0]={1};
for(int i=1;i<=N-1;++i){
J[i]={1,mint(1)/i};
}
auto P=Product(J)*f;
auto O=P.MultiEval(5000+N);
for(int i=1;i<=5000+N;++i){
O[i]+=O[i-1];
}
Print(lagrange(O,5000+N,mint(M)).val());
}