結果
問題 | No.2005 Sum of Power Sums |
ユーザー | ytqm3 |
提出日時 | 2022-07-08 23:46:42 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 17,407 bytes |
コンパイル時間 | 6,535 ms |
コンパイル使用メモリ | 314,824 KB |
実行使用メモリ | 125,436 KB |
最終ジャッジ日時 | 2024-06-09 04:24:09 |
合計ジャッジ時間 | 16,092 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 170 ms
34,560 KB |
testcase_01 | AC | 172 ms
29,112 KB |
testcase_02 | AC | 197 ms
29,300 KB |
testcase_03 | AC | 168 ms
29,056 KB |
testcase_04 | AC | 166 ms
28,964 KB |
testcase_05 | AC | 173 ms
29,184 KB |
testcase_06 | AC | 178 ms
29,180 KB |
testcase_07 | AC | 174 ms
29,136 KB |
testcase_08 | AC | 186 ms
29,092 KB |
testcase_09 | AC | 197 ms
29,304 KB |
testcase_10 | AC | 182 ms
29,056 KB |
testcase_11 | AC | 205 ms
29,568 KB |
testcase_12 | AC | 171 ms
29,028 KB |
testcase_13 | AC | 208 ms
29,556 KB |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
ソースコード
#include <bits/stdc++.h> #if __has_include(<atcoder/all>) #include <atcoder/all> #endif namespace ttl{ using namespace std; using f80=long double; using i64=int64_t; using u64=uint64_t; template<typename T> void Scan_(T& a){ cin>>a; } template<typename T,typename U> void Scan_(pair<T,U>& a){ Scan_(a.first),Scan_(a.second); } template<typename T> void Scan_(vector<T>& a){ for(auto& v:a){ Scan_(v); } } template<typename T> void Scan_(vector<vector<T>>& a){ for(auto& v:a){ for(auto& u:v){ Scan_(u); } } } void Scan(){} template<typename T,class... Args> void Scan(T& n,Args&... args){ Scan_(n),Scan(args...); } template<typename T> void Print_(T a){ cout<<a; } template<typename T,typename U> void Print_(pair<T,U> a){ Print_(a.first),cout<<" ";Print_(a.second); } void Print_(f80 a){ printf("%.10Lf",a); } template<typename T> void Print(vector<T> a){ for(size_t i=0;i<a.size();++i){ Print_(a[i]); cout<<" \n"[i==a.size()-1]; } } template<typename T> void Print(vector<vector<T>> a){ for(auto& v:a){ for(size_t i=0;i<v.size();++i){ Print_(v[i]); cout<<" \n"[i==v.size()-1]; } } } template<typename T> void Print(T a){ Print_(a); cout<<"\n"; } template<typename T,class... Args> void Print(T a,Args... args){ Print_(a),cout<<" ",Print(args...); } //しおむすびありがとう template<class Head,class... Tail> struct MultiDimVec{ using type=vector<typename MultiDimVec<Tail...>::type>; }; template<class T> struct MultiDimVec<T>{ using type=T; }; template<class T,class Arg> vector<T> MakeVec(int n,Arg&& arg){ return vector<T>(n,arg); } template<class T,class... Args> typename MultiDimVec<Args...,T>::type MakeVec(int n,Args&&... args){ return typename MultiDimVec<Args...,T>::type(n,MakeVec<T>(args...)); } template<typename T> T Sum(vector<T> a){ return accumulate(a.begin(),a.end(),T(0)); } template<typename T> T Rev_(T a){ reverse(a.begin(),a.end()); return a; } template<typename T> void Rev(T& a){ reverse(a.begin(),a.end()); } template<typename T> T Sort_(T a){ sort(a.begin(),a.end()); return a; } template<typename T> void Sort(T& a){ sort(a.begin(),a.end()); } template<typename T> T RSort_(T a){ sort(a.rbegin(),a.rend()); return a; } template<typename T> void RSort(T& a){ sort(a.rbegin(),a.rend()); } template<typename T> T Max(vector<T> a){ return *max_element(a.begin(),a.end()); } template<typename T> T Min(vector<T> a){ return *min_element(a.begin(),a.end()); } template<typename T> void ChMax(T& a,T b){ a=max(a,b); } template<typename T> void ChMin(T& a,T b){ a=min(a,b); } i64 Tr(i64 n){ return n*(n+1)/2; } i64 PopCnt(u64 k){ return __builtin_popcountll(k); } i64 SqrtF(i64 n){ i64 ok=0,ng=1e9+5; while(std::abs(ok-ng)>1){ i64 mid=(ok+ng)/2; (mid*mid<=n?ok:ng)=mid; } return ok; } i64 FDiv(i64 a,i64 b){ if(b<0){ a*=-1,b*=-1; } if(a<0){ return -(-a+b-1)/b; } return a/b; } i64 CDiv(i64 a,i64 b){ if(b<0){ a*=-1,b*=-1; } if(a<0){ return -(-a)/b; } return (a+b-1)/b; } vector<i64> LISSize(vector<i64> A){ int N=A.size(); vector<i64> dp(N+1,2e18),res(N+1); dp[0]=-1; for(int i=0;i<N;++i){ auto j=(lower_bound(dp.begin(),dp.end(),A[i])-dp.begin())-1; dp[j+1]=A[i]; res[i+1]=max(res[i],i64(j+1)); } return res; } #if __has_include(<atcoder/all>) i64 CountInverse(vector<i64> A){ int N=A.size(); auto B=A; sort(B.begin(),B.end()); B.erase(unique(B.begin(),B.end()),B.end()); map<i64,i64> mp; for(size_t i=0;i<B.size();++i){ mp[B[i]]=i; } for(int i=0;i<N;++i){ A[i]=mp[A[i]]; } atcoder::fenwick_tree<i64> fwt(N); i64 ans=0; for(int i=0;i<N;++i){ fwt.add(A[i],1); ans+=fwt.sum(A[i]+1,N); } return ans; } #endif struct ESieve{ int n; vector<i64> lpf; ESieve(int n_):n(n_),lpf(n_+1,-1){ for(i64 p=2;p<=n;++p){ if(lpf[p]!=-1){ continue; } for(i64 q=p;q<=n;q+=p){ if(lpf[q]==-1){ lpf[q]=p; } } } } vector<pair<i64,i64>> operator()(int m){ vector<i64> v; while(m!=1){ v.emplace_back(lpf[m]); m/=lpf[m]; } if(v.size()==0){ return {}; } vector<pair<i64,i64>> res; res.emplace_back(v[0],1); for(size_t i=1;i<v.size();++i){ if(v[i-1]!=v[i]){ res.emplace_back(v[i],1); } else{ res.back().second++; } } return res; } }; vector<int> Dist(vector<vector<int>> G,int v){ int N=G.size(); vector<int> dst(N,-1); queue<int> q; dst[v]=0; q.emplace(v); while(q.size()){ int t=q.front(); q.pop(); for(auto u:G[t]){ if(dst[u]==-1){ dst[u]=dst[t]+1; q.emplace(u); } } } return dst; } void SpreadGrid(vector<string>& S,int h,int w,char c){ int H=S.size(),W=S[0].size(); auto res=MakeVec<string>(h,""); for(int i=0;i<h;++i){ for(int j=0;j<w;++j){ if(i<H && j<W){ res[i]+=S[i][j]; } else{ res[i]+=c; } } } S=res; } bool CheckPrime(i64 n){ if(n<2){ return 0; } for(i64 i=2;i*i<=n;++i){ if(n%i==0){ return 0; } } return 1; } vector<pair<i64,i64>> PrimeFact(i64 n){ vector<pair<i64,i64>> res; for(i64 i=2;i*i<=n;++i){ if(n%i!=0){ continue; } i64 ex=0; while(n%i==0){ ex++,n/=i; } res.emplace_back(i,ex); } if(n!=1){ res.emplace_back(n,1); } return res; } vector<i64> EnumDiv(i64 n){ vector<i64> res; for(i64 i=1;i*i<=n;++i){ if(n%i!=0){ continue; } res.emplace_back(i); if(i*i!=n){ res.emplace_back(n/i); } } sort(res.begin(),res.end()); return res; } template<typename T> vector<pair<T,i64>> RunLenEnc(vector<T> a){ int n=a.size(); vector<pair<T,i64>> res; T now=a[0]; int l=1; for(int i=1;i<n;++i){ if(a[i-1]==a[i]){ l++; } else{ res.emplace_back(now,l); now=a[i],l=1; } } res.emplace_back(now,l); return res; } vector<pair<char,i64>> RunLenEnc(string a){ int n=a.size(); vector<pair<char,i64>> res; char now=a[0]; int l=1; for(int i=1;i<n;++i){ if(a[i-1]==a[i]){ l++; } else{ res.emplace_back(now,l); now=a[i],l=1; } } res.emplace_back(now,l); return res; } template<typename T> struct Comb{ vector<T> fac,ifac; Comb(int mx=3000000):fac(mx+1,1),ifac(mx+1,1){ for(int i=1;i<=mx;++i){ fac[i]=fac[i-1]*i; } ifac[mx]/=fac[mx]; for(int i=mx;i>0;--i){ ifac[i-1]=ifac[i]*i; } } T operator()(int n,int k){ if(n<0||k<0||n<k){ return 0; } return fac[n]*ifac[k]*ifac[n-k]; } }; } using namespace ttl; template<u64 mod> using ModInt=atcoder::static_modint<mod>; template<u64 mod> struct FPS{ using mint=ModInt<mod>; vector<mint> val; FPS():val({0}){} FPS(mint t):val({t}){} FPS(int siz):val(max(1,siz)){} FPS(initializer_list<mint> init):val(init){} FPS(vector<mint> init):val(init){} mint &operator[](int i){ return val[i]; } int size(){ return val.size(); } void resize(int siz){ val.resize(siz); } FPS& resize_(int siz){ auto tmp=val; tmp.resize(siz); return (*this)=tmp; } FPS operator-(){ for(mint& v:val){ v=mint(0)-v; } return (*this); } FPS& operator+=(mint rhs){ val[0]+=rhs; return (*this); } FPS& operator-=(mint rhs){ val[0]-=rhs; return (*this); } FPS& operator*=(mint rhs){ for(auto& v:val){ v*=rhs; } return (*this); } FPS& operator/=(mint rhs){ for(auto& v:val){ v/=rhs; } return (*this); } FPS operator+(mint rhs){ return FPS(*this)+=rhs; } FPS operator-(mint rhs){ return FPS(*this)-=rhs; } FPS operator*(mint rhs){ return FPS(*this)*=rhs; } FPS operator/(mint rhs){ return FPS(*this)/=rhs; } FPS& operator+=(FPS rhs){ resize(max(this->size(),rhs.size())); for(int i=0;i<int(rhs.size());++i){ (*this)[i]+=rhs[i]; } return (*this); } FPS& operator-=(FPS rhs){ resize(max(this->size(),rhs.size())); for(int i=0;i<int(rhs.size());++i){ (*this)[i]-=rhs[i]; } return (*this); } FPS& operator*=(FPS rhs){ val=atcoder::convolution(val,rhs.val); return (*this); } FPS& operator/=(FPS rhs){ return (*this)*=rhs.inv(); } FPS& operator>>=(int k){ if(int(val.size())<=k){ return (*this)={0}; } FPS res=val; res.val.erase(res.val.begin(),res.val.begin()+k); return (*this)=res; } FPS& operator<<=(int k){ FPS res=val; res.val.insert(res.val.begin(),k,mint(0)); return (*this)=res; } FPS operator+(FPS rhs){ return FPS(*this)+=rhs; } FPS operator-(FPS rhs){ return FPS(*this)-=rhs; } FPS operator*(FPS rhs){ return FPS(*this)*=rhs; } FPS operator/(FPS rhs){ return FPS(*this)/=rhs; } FPS operator%(FPS rhs){ return FPS(*this)%=rhs; } FPS operator<<(int k){ return FPS(*this)<<=k; } FPS operator>>(int k){ return FPS(*this)>>=k; } FPS shrink(){ for(int i=val.size()-1;i>0;--i){ if(val[i]==0){ val.pop_back(); } else{ break; } } return (*this); } FPS diff_(){ if(val.size()==1){ return (*this)={0}; } FPS f(val.size()-1); for(size_t i=1;i<val.size();++i){ f[i-1]=val[i]*i; } return f; } FPS integral_(){ FPS f(val.size()+1); for(size_t i=0;i<val.size();++i){ f[i+1]=val[i]/(i+1); } return f; } FPS inv_(int mx=-1){ if(mx==-1){ mx=val.size(); } if(val[0]==0){ assert(0); } FPS g({mint(1)/val[0]}); int now=1; while(now<mx){ now<<=1; FPS t=(*this); t.resize(now); t*=g; t=-t+mint(2); g*=t; g.resize(now); } g.resize(mx); return g; } FPS exp_(int mx=-1){ if(mx==-1){ mx=val.size(); } if(val[0]!=0){ assert(0); } FPS g(mint(1)); int now=1; while(now<mx){ now<<=1; FPS t=(*this); t.resize(now); g*=t-g.log_(now)+mint(1); g.resize(now); } g.resize(mx); return g; } FPS log_(int mx=-1){ if(mx==-1){ mx=val.size(); } if(val[0]!=1){ assert(0); } auto f=(*this); f.resize(mx); return (f.diff_()/f).integral_().resize_(mx); } FPS pow_(i64 k,int mx=-1){ if(mx==-1){ mx=val.size(); } i64 t=0; for(auto v:val){ if(v==0){ t++; } else{ break; } } auto f=(*this)>>t; if(f[0]==0){ f={0},f.resize(mx); return f; } mint c=f[0]; f/=c; (f.log(mx)*=mint(k)).exp(mx)*=(c.pow(k)); if(t*k<=mx){ f<<=t*k; f.resize(mx); return f; } else{ f={0},f.resize(mx); return f; } } FPS& diff(){ return (*this)=diff_(); } FPS& integral(){ return (*this)=integral_(); } FPS& inv(int mx=-1){ return (*this)=inv_(mx); } FPS& exp(int mx=-1){ return (*this)=exp_(mx); } FPS& log(int mx=-1){ return (*this)=log_(mx); } FPS& pow(i64 k,int mx=-1){ return (*this)=pow_(k,mx); } void TaylorShift(mint c){ Comb<mint> C(val.size()); vector<mint> g(val.size()); mint now=1; for(size_t i=0;i<val.size();++i){ val[i]*=C.dat[i]; g[i]=now*C.idat[i]; now*=c; } reverse(val.begin(),val.end()); g=atcoder::convolution(val,g); g.resize(val.size()); reverse(g.begin(),g.end()); for(size_t i=0;i<val.size();++i){ g[i]*=C.idat[i]; } val=g; } }; template<u64 mod> struct Poly{ typedef ModInt<mod> mint; vector<mint> val; Poly():val({0}){} Poly(mint t):val({t}){} Poly(int siz):val(max(1,siz)){} Poly(initializer_list<mint> init):val(init){} Poly(vector<mint> init):val(init){} mint &operator[](int i){ return val[i]; } int size(){ return val.size(); } void resize(int siz){ val.resize(siz); } void shrink(){ for(int i=val.size()-1;i>0;--i){ if(val[i]==0){ val.pop_back(); } else{ return; } } } Poly operator+(Poly rhs){ return Poly(*this)+=rhs; } Poly operator-(Poly rhs){ return Poly(*this)-=rhs; } Poly operator*(Poly rhs){ return Poly(*this)*=rhs; } Poly operator/(Poly rhs){ return Poly(*this)/=rhs; } Poly operator%(Poly rhs){ return Poly(*this)%=rhs; } Poly operator-(){ for(mint& v:val){ v=mint(0)-v; } return (*this); } Poly operator+=(Poly rhs){ resize(max(this->size(),rhs.size())); for(int i=0;i<int(rhs.size());++i){ (*this)[i]+=rhs[i]; } shrink(); return (*this); } Poly operator-=(Poly rhs){ resize(max(this->size(),rhs.size())); for(int i=0;i<int(rhs.size());++i){ (*this)[i]-=rhs[i]; } shrink(); return (*this); } Poly operator*=(Poly rhs){ val=atcoder::convolution(val,rhs.val); return (*this); } Poly operator/=(Poly rhs){ if(val.size()<rhs.size()){ val.resize(0); return (*this); } int rsiz=val.size()-rhs.size()+1; reverse(val.begin(),val.end()); reverse(rhs.val.begin(),rhs.val.end()); val.resize(rsiz),rhs.inv(rsiz); (*this)*=rhs; val.resize(rsiz); reverse(val.begin(),val.end()); return (*this); } Poly operator%=(Poly rhs){ if(val.size()<rhs.size()){ return (*this); } (*this)-=(*this)/rhs*rhs; val.resize(rhs.size()-1); shrink(); return (*this); } mint eval(mint a){ mint t=1,res=0; int n=(*this).size(); for(int i=0;i<n;++i){ res+=val[i]*t; t*=a; } return res; } void diffrent(){ Poly f(val.size()-1); for(int i=1;i<val.size();++i){ f[i-1]=val[i]*i; } (*this)=f; } void integral(){ Poly f(val.size()+1); for(int i=0;i<val.size();++i){ f[i+1]=val[i]/(i+1); } (*this)=f; } void inv(int mx){ Poly g({mint(1)/val[0]}); int now=1; while(now<mx){ now<<=1; Poly t=(*this); t.resize(now); t*=g,t=-t; t[0]+=2,g*=t; g.resize(now); } g.resize(mx); (*this)=g; } vector<mint> MultiEval(int K){ int siz=1; while(siz<K){ siz<<=1; } vector<Poly> t(siz*2-1,{1}); for(int i=0;i<=K;++i){ t[i+siz-1]={-i,1}; } for(int i=siz-2;i>=0;--i){ t[i]=t[2*i+1]*t[2*i+2]; } vector<Poly> g(siz*2-1); g[0]=(*this)%t[0]; for(int i=1;i<siz*2-1;++i){ g[i]=g[(i-1)/2]%t[i]; } vector<mint> res(K+1); for(int i=0;i<=K;++i){ res[i]=g[i+siz-1][0]; } return res; } void LagrangeInterpolation(vector<mint> x,vector<mint> y){ int N=x.size(); vector<Poly> h(N); for(int i=0;i<N;++i){ h[i]={-x[i],1}; } auto g=Product(h); Poly<mod> g_=g; g_.diffrent(); vector<mint> t=g_.MultiEval(x); for(int i=0;i<N;++i){ t[i]=y[i]/t[i]; } vector<Poly<mod>> den(2*N-1),num(2*N-1,{1}); for(int i=0;i<N;++i){ den[i+N-1]={-x[i],1}; num[i+N-1]={t[i]}; } for(int i=N-2;i>=0;--i){ den[i]=den[2*i+1]*den[2*i+2]; num[i]=num[2*i+1]*den[2*i+2]+num[2*i+2]*den[2*i+1]; } (*this)=num[0]; } }; template<typename T> T Product(vector<T> a){ int siz=1; while(siz<int(a.size())){ siz<<=1; } vector<T> res(siz*2-1,{1}); for(int i=0;i<int(a.size());++i){ res[i+siz-1]=a[i]; } for(int i=siz-2;i>=0;--i){ res[i]=res[2*i+1]*res[2*i+2]; } return res[0]; } template<u64 mod> vector<ModInt<mod>> StirlingNumber2(int N){ typedef ModInt<mod> mint; FPS<mod> f(N+1),g(N+1); mint fact=1; for(int i=0;i<=N;++i){ f[i]=(mint(i).pow(N))/fact; g[i]=(mint(-1).pow(i))/fact; fact*=i+1; } f*=g; vector<mint> res(N+1); for(int i=0;i<=N;++i){ res[i]=f[i]; } return res; } template<typename mint> mint lagrange(vector<mint> A,int N,mint T){ if(T.val()<=N){ return A[T.val()]; } vector<mint> Q_i(N+1,1); for(int i=1;i<=N;++i){ Q_i[0]*=-i; } for(int i=1;i<=N;++i){ Q_i[i]=Q_i[i-1]/(i-N-1)*i; } vector<mint> c(N+1); for(int i=0;i<=N;++i){ c[i]=A[i]/Q_i[i]; } mint prod=1; for(int i=0;i<=N;++i){ prod*=T-i; } mint res=0; for(int i=0;i<=N;++i){ res+=c[i]*prod/(T-i); } return res; } int main(){ constexpr u64 mod=998244353; using mint=ModInt<mod>; Comb<ModInt<998244353>> Cb; //f := sum[j=1,5000] cnt[j]*(M-x)^j //h(x) := sum[i=0,x] Cb(N-1+i,i)*f(i) は deg(f)+N 次多項式である //すべての k=0,1,...,deg(f)+N について h(k) がわかればよい //すべての k=0,1,...,deg(f)+N について g(k)=Cb(N-1+k,k)*f(k) がわかればよい //多点評価 i64 N,M; Scan(N,M); vector<int> cnt(5001); for(int i=0;i<N;++i){ int k; scanf("%d",&k); cnt[k]++; } Poly<mod> f,g={M,-1}; for(int i=1;i<=5000;++i){ f+=g*mint(cnt[i]); Poly<mod> g_(g.size()+1); for(int j=0;j<g.size();++j){ g_[j]+=g[j]*M; g_[j+1]-=g[j]; } g=g_; } vector<Poly<mod>> J(N); J[0]={1}; for(int i=1;i<=N-1;++i){ J[i]={1,mint(1)/i}; } auto P=Product(J)*f; auto O=P.MultiEval(5000+N); for(int i=1;i<=5000+N;++i){ O[i]+=O[i-1]; } Print(lagrange(O,5000+N,mint(M)).val()); }