結果
問題 | No.2005 Sum of Power Sums |
ユーザー | sigma425 |
提出日時 | 2022-07-10 00:44:18 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 513 ms / 2,000 ms |
コード長 | 17,109 bytes |
コンパイル時間 | 2,425 ms |
コンパイル使用メモリ | 222,332 KB |
実行使用メモリ | 21,880 KB |
最終ジャッジ日時 | 2024-06-10 09:59:26 |
合計ジャッジ時間 | 6,123 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 10 ms
7,168 KB |
testcase_01 | AC | 10 ms
7,168 KB |
testcase_02 | AC | 11 ms
7,040 KB |
testcase_03 | AC | 10 ms
7,040 KB |
testcase_04 | AC | 10 ms
7,168 KB |
testcase_05 | AC | 9 ms
6,944 KB |
testcase_06 | AC | 10 ms
7,040 KB |
testcase_07 | AC | 9 ms
7,040 KB |
testcase_08 | AC | 9 ms
7,040 KB |
testcase_09 | AC | 10 ms
7,040 KB |
testcase_10 | AC | 10 ms
7,040 KB |
testcase_11 | AC | 12 ms
7,168 KB |
testcase_12 | AC | 10 ms
7,040 KB |
testcase_13 | AC | 13 ms
7,168 KB |
testcase_14 | AC | 506 ms
21,504 KB |
testcase_15 | AC | 510 ms
21,880 KB |
testcase_16 | AC | 513 ms
21,524 KB |
testcase_17 | AC | 512 ms
21,524 KB |
testcase_18 | AC | 10 ms
7,040 KB |
testcase_19 | AC | 12 ms
7,168 KB |
testcase_20 | AC | 496 ms
21,524 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using uint = unsigned int; using ull = unsigned long long; #define rep(i,n) for(int i=0;i<int(n);i++) #define rep1(i,n) for(int i=1;i<=int(n);i++) #define per(i,n) for(int i=int(n)-1;i>=0;i--) #define per1(i,n) for(int i=int(n);i>0;i--) #define all(c) c.begin(),c.end() #define si(x) int(x.size()) #define pb push_back #define eb emplace_back #define fs first #define sc second template<class T> using V = vector<T>; template<class T> using VV = vector<vector<T>>; template<class T,class U> bool chmax(T& x, U y){ if(x<y){ x=y; return true; } return false; } template<class T,class U> bool chmin(T& x, U y){ if(y<x){ x=y; return true; } return false; } template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());} template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();} template<class T> V<T> Vec(size_t a) { return V<T>(a); } template<class T, class... Ts> auto Vec(size_t a, Ts... ts) { return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...)); } template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){ return o<<"("<<p.fs<<","<<p.sc<<")"; } template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){ o<<"{"; for(const T& v:vc) o<<v<<","; o<<"}"; return o; } constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); } #ifdef LOCAL #define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl void dmpr(ostream& os){os<<endl;} template<class T,class... Args> void dmpr(ostream&os,const T&t,const Args&... args){ os<<t<<" ~ "; dmpr(os,args...); } #define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__) #define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \ for(auto v: x) cerr << v << ","; cerr << "}" << endl; #else #define show(x) void(0) #define dump(x) void(0) #define shows(...) void(0) #endif template<class D> D divFloor(D a, D b){ return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0); } template<class D> D divCeil(D a, D b) { return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0); } template<unsigned int mod_> struct ModInt{ using uint = unsigned int; using ll = long long; using ull = unsigned long long; constexpr static uint mod = mod_; uint v; ModInt():v(0){} ModInt(ll _v):v(normS(_v%mod+mod)){} explicit operator bool() const {return v!=0;} static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1] static ModInt make(const uint &x){ModInt m; m.v=x; return m;} ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));} ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));} ModInt operator-() const { return make(normS(mod-v)); } ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);} ModInt operator/(const ModInt& b) const { return *this*b.inv();} ModInt& operator+=(const ModInt& b){ return *this=*this+b;} ModInt& operator-=(const ModInt& b){ return *this=*this-b;} ModInt& operator*=(const ModInt& b){ return *this=*this*b;} ModInt& operator/=(const ModInt& b){ return *this=*this/b;} ModInt& operator++(int){ return *this=*this+1;} ModInt& operator--(int){ return *this=*this-1;} template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);} template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);} template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);} template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);} ModInt pow(ll p) const { if(p<0) return inv().pow(-p); ModInt a = 1; ModInt x = *this; while(p){ if(p&1) a *= x; x *= x; p >>= 1; } return a; } ModInt inv() const { // should be prime return pow(mod-2); } // ll extgcd(ll a,ll b,ll &x,ll &y) const{ // ll p[]={a,1,0},q[]={b,0,1}; // while(*q){ // ll t=*p/ *q; // rep(i,3) swap(p[i]-=t*q[i],q[i]); // } // if(p[0]<0) rep(i,3) p[i]=-p[i]; // x=p[1],y=p[2]; // return p[0]; // } // ModInt inv() const { // ll x,y; // extgcd(v,mod,x,y); // return make(normS(x+mod)); // } bool operator==(const ModInt& b) const { return v==b.v;} bool operator!=(const ModInt& b) const { return v!=b.v;} bool operator<(const ModInt& b) const { return v<b.v;} friend istream& operator>>(istream &o,ModInt& x){ ll tmp; o>>tmp; x=ModInt(tmp); return o; } friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;} }; using mint = ModInt<998244353>; //using mint = ModInt<1000000007>; V<mint> fact,ifact,invs; mint Choose(int a,int b){ if(b<0 || a<b) return 0; return fact[a] * ifact[b] * ifact[a-b]; } void InitFact(int N){ //[0,N] N++; fact.resize(N); ifact.resize(N); invs.resize(N); fact[0] = 1; rep1(i,N-1) fact[i] = fact[i-1] * i; ifact[N-1] = fact[N-1].inv(); for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1); rep1(i,N-1) invs[i] = fact[i-1] * ifact[i]; } // inplace_fmt (without bit rearranging) // fft: // a[rev(i)] <- \sum_j \zeta^{ij} a[j] // invfft: // a[i] <- (1/n) \sum_j \zeta^{-ij} a[rev(j)] // These two are inversions. // !!! CHANGE IF MOD is unusual !!! const int ORDER_2_MOD_MINUS_1 = 23; // ord_2 (mod-1) const mint PRIMITIVE_ROOT = 3; // primitive root of (Z/pZ)* void fft(V<mint>& a){ static constexpr uint mod = mint::mod; static constexpr uint mod2 = mod + mod; static const int H = ORDER_2_MOD_MINUS_1; static const mint root = PRIMITIVE_ROOT; static mint magic[H-1]; int n = si(a); assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2 if(!magic[0]){ // precalc rep(i,H-1){ mint w = -root.pow(((mod-1)>>(i+2))*3); magic[i] = w; } } int m = n; if(m >>= 1){ rep(i,m){ uint v = a[i+m].v; // < M a[i+m].v = a[i].v + mod - v; // < 2M a[i].v += v; // < 2M } } if(m >>= 1){ mint p = 1; for(int h=0,s=0; s<n; s += m*2){ for(int i=s;i<s+m;i++){ uint v = (a[i+m] * p).v; // < M a[i+m].v = a[i].v + mod - v; // < 3M a[i].v += v; // < 3M } p *= magic[__builtin_ctz(++h)]; } } while(m){ if(m >>= 1){ mint p = 1; for(int h=0,s=0; s<n; s += m*2){ for(int i=s;i<s+m;i++){ uint v = (a[i+m] * p).v; // < M a[i+m].v = a[i].v + mod - v; // < 4M a[i].v += v; // < 4M } p *= magic[__builtin_ctz(++h)]; } } if(m >>= 1){ mint p = 1; for(int h=0,s=0; s<n; s += m*2){ for(int i=s;i<s+m;i++){ uint v = (a[i+m] * p).v; // < M a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M a[i+m].v = a[i].v + mod - v; // < 3M a[i].v += v; // < 3M } p *= magic[__builtin_ctz(++h)]; } } } rep(i,n){ a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M a[i].v = (a[i].v >= mod) ? a[i].v - mod : a[i].v; // < M } // finally < mod !! } void invfft(V<mint>& a){ static constexpr uint mod = mint::mod; static constexpr uint mod2 = mod + mod; static const int H = ORDER_2_MOD_MINUS_1; static const mint root = PRIMITIVE_ROOT; static mint magic[H-1]; int n = si(a); assert(!(n & (n-1))); assert(n >= 1); assert(n <= 1<<H); // n should be power of 2 if(!magic[0]){ // precalc rep(i,H-1){ mint w = -root.pow(((mod-1)>>(i+2))*3); magic[i] = w.inv(); } } int m = 1; if(m < n>>1){ mint p = 1; for(int h=0,s=0; s<n; s += m*2){ for(int i=s;i<s+m;i++){ ull x = a[i].v + mod - a[i+m].v; // < 2M a[i].v += a[i+m].v; // < 2M a[i+m].v = (p.v * x) % mod; // < M } p *= magic[__builtin_ctz(++h)]; } m <<= 1; } for(;m < n>>1; m <<= 1){ mint p = 1; for(int h=0,s=0; s<n; s+= m*2){ for(int i=s;i<s+(m>>1);i++){ ull x = a[i].v + mod2 - a[i+m].v; // < 4M a[i].v += a[i+m].v; // < 4M a[i].v = (a[i].v >= mod2) ? a[i].v - mod2 : a[i].v; // < 2M a[i+m].v = (p.v * x) % mod; // < M } for(int i=s+(m>>1); i<s+m; i++){ ull x = a[i].v + mod - a[i+m].v; // < 2M a[i].v += a[i+m].v; // < 2M a[i+m].v = (p.v * x) % mod; // < M } p *= magic[__builtin_ctz(++h)]; } } if(m < n){ rep(i,m){ uint x = a[i].v + mod2 - a[i+m].v; // < 4M a[i].v += a[i+m].v; // < 4M a[i+m].v = x; // < 4M } } const mint in = mint(n).inv(); rep(i,n) a[i] *= in; // < M // finally < mod !! } // A,B = 500000 -> 70ms // verify https://judge.yosupo.jp/submission/44937 V<mint> multiply(V<mint> a, V<mint> b) { int A = si(a), B = si(b); if (!A || !B) return {}; int n = A+B-1; int s = 1; while(s<n) s*=2; if(a == b){ // # of fft call : 3 -> 2 a.resize(s); fft(a); rep(i,s) a[i] *= a[i]; }else{ a.resize(s); fft(a); b.resize(s); fft(b); rep(i,s) a[i] *= b[i]; } invfft(a); a.resize(n); return a; } /* 係数アクセス f[i] でいいが、 配列外参照する可能性があるなら at/set */ template<class mint> struct Poly: public V<mint>{ using vector<mint>::vector; Poly() {} explicit Poly(int n) : V<mint>(n){} // poly<mint> a; a = 2; shouldn't be [0,0] Poly(int n, mint c) : V<mint>(n,c){} Poly(const V<mint>& a) : V<mint>(a){} Poly(initializer_list<mint> li) : V<mint>(li){} int size() const { return V<mint>::size(); } mint at(int i) const { return i<size() ? (*this)[i] : 0; } void set(int i, mint x){ if(i>=size() && !x) return; while(i>=size()) this->pb(0); (*this)[i] = x; return; } mint operator()(mint x) const { // eval mint res = 0; int n = size(); mint a = 1; rep(i,n){ res += a * (*this)[i]; a *= x; } return res; } Poly low(int n) const { // ignore x^n (take first n), but not empty return Poly(this->begin(), this->begin()+min(max(n,1),size())); } Poly rev() const { return Poly(this->rbegin(), this->rend()); } friend ostream& operator<<(ostream &o,const Poly& f){ o << "["; rep(i,f.size()){ o << f[i]; if(i != f.size()-1) o << ","; } o << "]"; return o; } Poly operator-() const { Poly res = *this; for(auto& v: res) v = -v; return res; } Poly& operator+=(const mint& c){ (*this)[0] += c; return *this; } Poly& operator-=(const mint& c){ (*this)[0] -= c; return *this; } Poly& operator*=(const mint& c){ for(auto& v: *this) v *= c; return *this; } Poly& operator/=(const mint& c){ return *this *= mint(1)/mint(c); } Poly& operator+=(const Poly& r){ if(size() < r.size()) this->resize(r.size(),0); rep(i,r.size()) (*this)[i] += r[i]; return *this; } Poly& operator-=(const Poly& r){ if(size() < r.size()) this->resize(r.size(),0); rep(i,r.size()) (*this)[i] -= r[i]; return *this; } Poly& operator*=(const Poly& r){ return *this = multiply(*this,r); } // 何回も同じrで割り算するなら毎回rinvを計算するのは無駄なので、呼び出し側で一回計算した後直接こっちを呼ぶと良い // 取るべきinvの長さに注意 // 例えば mod r で色々計算したい時は、基本的に deg(r) * 2 長さの多項式を r で割ることになる // とはいえいったん rinv を長く計算したらより短い場合はprefix見るだけだし、 rinv としてムダに長いものを渡しても問題ないので // 割られる多項式として最大の次数を取ればよい Poly quotient(const Poly& r, const Poly& rinv){ int m = r.size(); assert(r[m-1].v); int n = size(); int s = n-m+1; if(s <= 0) return {0}; return (rev().low(s)*rinv.low(s)).low(s).rev(); } Poly& operator/=(const Poly& r){ return *this = quotient(r,r.rev().inv(max(size()-r.size(),0)+1)); } Poly& operator%=(const Poly& r){ *this -= *this/r * r; return *this = low(r.size()-1); } Poly operator+(const mint& c) const {return Poly(*this) += c; } Poly operator-(const mint& c) const {return Poly(*this) -= c; } Poly operator*(const mint& c) const {return Poly(*this) *= c; } Poly operator/(const mint& c) const {return Poly(*this) /= c; } Poly operator+(const Poly& r) const {return Poly(*this) += r; } Poly operator-(const Poly& r) const {return Poly(*this) -= r; } Poly operator*(const Poly& r) const {return Poly(*this) *= r; } Poly operator/(const Poly& r) const {return Poly(*this) /= r; } Poly operator%(const Poly& r) const {return Poly(*this) %= r; } Poly diff() const { Poly g(max(size()-1,0)); rep(i,g.size()) g[i] = (*this)[i+1] * (i+1); return g; } Poly intg() const { assert(si(invs) > size()); Poly g(size()+1); rep(i,size()) g[i+1] = (*this)[i] * invs[i+1]; return g; } Poly square() const { return multiply(*this,*this); } // 1/f(x) mod x^s // N = s = 500000 -> 90ms // inv は 5 回 fft(2n) を呼んでいるので、multiply が 3 回 fft(2n) を呼ぶのと比べると // だいたい multiply の 5/3 倍の時間がかかる // 導出: Newton // fg = 1 mod x^m // (fg-1)^2 = 0 mod x^2m // f(2g-fg^2) = 1 mod x^2m // verify: https://judge.yosupo.jp/submission/44938 Poly inv(int s) const { Poly r(s); r[0] = mint(1)/at(0); for(int n=1;n<s;n*=2){ // 5 times fft : length 2n V<mint> f = low(2*n); f.resize(2*n); fft(f); V<mint> g = r.low(2*n); g.resize(2*n); fft(g); rep(i,2*n) f[i] *= g[i]; invfft(f); rep(i,n) f[i] = 0; fft(f); rep(i,2*n) f[i] *= g[i]; invfft(f); for(int i=n;i<min(2*n,s);i++) r[i] -= f[i]; } return r; } // log f mod x^s // 導出: D log(f) = (D f) / f // 500000: 180ms // mult の 8/3 倍 // verify: https://judge.yosupo.jp/submission/44962 Poly log(int s) const { assert(at(0) == 1); if(s == 1) return {0}; return (low(s).diff() * inv(s-1)).low(s-1).intg(); } // e^f mod x^s // f.log(s).exp(s) == [1,0,...,0] // 500000 : 440ms // TODO: 高速化! // 速い実装例 (hos): https://judge.yosupo.jp/submission/36732 150ms // 導出 Newton: // g = exp(f) // log(g) - f = 0 // g == g0 mod x^m // g == g0 - (log(g0) - f) / (1/g0) mod x^2m // verify: yosupo Poly exp(int s) const { assert(at(0) == 0); Poly f({1}),g({1}); for(int n=1;n<s;n*=2){ g = (g*2-g.square().low(n)*f).low(n); Poly q = low(n).diff(); q = q + g * (f.diff() - f*q).low(2*n-1); f = (f + f * (low(2*n)-q.intg()) ).low(2*n); } return f.low(s); } // f^p mod x^s // 500000: 600ms // 導出: f^p = e^(p log f) // log 1回、 exp 1回 // Exp.cpp (Mifafa technique) も参照 // c.f. (f の non0 coef の個数) * s // verify: https://judge.yosupo.jp/submission/44992 Poly pow(ll p, int s) const { if(p == 0){ return Poly(s) + 1; // 0^0 is 1 } int ord = 0; while(ord<s && !at(ord)) ord++; if((s-1)/p < ord) return Poly(s); // s <= p * ord int off = p*ord; int s_ = s-off; const mint a0 = at(ord), ia0 = a0.inv(), ap = a0.pow(p); Poly f(s_); rep(i,s_) f[i] = at(i+ord) * ia0; f = (f.log(s_) * p).exp(s_); Poly res(s); rep(i,s_) res[i+off] = f[i] * ap; return res; } // f^(1/2) mod x^s // f[0] should be 1 // 11/6 // verify: https://judge.yosupo.jp/submission/44997 Poly sqrt(int s) const { assert(at(0) == 1); static const mint i2 = mint(2).inv(); V<mint> f{1},g{1},z{1}; for(int n=1;n<s;n*=2){ rep(i,n) z[i] *= z[i]; invfft(z); V<mint> d(2*n); rep(i,n) d[n+i] = z[i] - at(i) - at(n+i); fft(d); V<mint> g2(2*n); rep(i,n) g2[i] = g[i]; fft(g2); rep(i,n*2) d[i] *= g2[i]; invfft(d); f.resize(n*2); for(int i=n;i<n*2;i++) f[i] = -d[i] * i2; if(n*2 >= s) break; z = f; fft(z); V<mint> eps = g2; rep(i,n*2) eps[i] *= z[i]; invfft(eps); rep(i,n) eps[i] = 0; fft(eps); rep(i,n*2) eps[i] *= g2[i]; invfft(eps); g.resize(n*2); for(int i=n;i<n*2;i++) g[i] -= eps[i]; } f.resize(s); return f; } // Taylor Shift // return f(x+c) // O(N logN) // verify: yosupo Poly shift(mint c){ int n = size(); assert(si(fact) >= n); // please InitFact V<mint> f(n); rep(i,n) f[i] = (*this)[i] * fact[i]; V<mint> g(n); mint cpow = 1; rep(i,n){g[i] = cpow * ifact[i]; cpow *= c;} reverse(all(g)); V<mint> h = multiply(f,g); Poly res(n); rep(i,n) res[i] = h[n-1+i] * ifact[i]; return res; } }; // return f(K+1) // f[k] = 0^k + .. + n^k // \sum_{k>=0} f[k] x^k/k! = e^0x + .. + e^nx = 1-e^(n+1)x / 1-e^x // O(KlogK) // 0^0 = 1 // keyword: faulhaber ファウルハーバー vector<mint> SumOfPower(mint n, int K){ assert(si(fact) > K); Poly<mint> a(K+1),b(K+1); mint pw = 1; rep1(i,K+1){ pw *= n+1; a[i-1] = ifact[i]; b[i-1] = ifact[i] * pw; } auto f = b*a.inv(K+1); V<mint> res(K+1); rep(k,K+1) res[k] = f[k] * fact[k]; return res; } int main(){ cin.tie(0); ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !! cout << fixed << setprecision(20); InitFact(300000); int N; ll M; cin >> N >> M; queue<Poly<mint>> q; q.push(Poly<mint>({1})); rep(i,N-1){ q.push(Poly<mint>({M+1+i,-1})); } while(si(q) > 1){ auto f = q.front(); q.pop(); auto g = q.front(); q.pop(); q.push(f*g); } auto f = q.front(); f *= ifact[N-1]; Poly<mint> g(5001); rep(i,N){ int k; cin >> k; g[k]++; } f *= g; int X = si(f)-1; auto p = SumOfPower(M,X); mint ans = 0; rep(i,X+1) ans += f[i] * p[i]; cout << ans << endl; }