結果

問題 No.8079 アルベド
ユーザー nonamae
提出日時 2022-07-12 10:32:13
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
RE  
実行時間 -
コード長 2,284 bytes
コンパイル時間 2,030 ms
コンパイル使用メモリ 196,636 KB
最終ジャッジ日時 2025-01-30 06:42:20
ジャッジサーバーID
(参考情報)
judge5 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other RE * 10
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘u64 prime_counting(u64)’:
main.cpp:45:13: warning: ‘*larges[0]’ may be used uninitialized [-Wmaybe-uninitialized]
   45 |     larges[0] += (i64)(s + 2 * (pc - 1)) * (s - 1) / 2;
      |     ~~~~~~~~^

ソースコード

diff #

#include <bits/stdc++.h>

using i64 = std::int64_t;
using u64 = std::uint64_t;

u64 prime_counting(u64 n) {
    
    if (n == 0) return n;
   
    if (n <= 3) return n - 1;
    
    const int v = sqrtl(n);
    int s = (v + 1) / 2;
    int smalls[s]; for (int i = 1; i < s; i++) smalls[i] = i;
    int roughs[s]; for (int i = 0; i < s; i++) roughs[i] = 2 * i + 1;
    i64 larges[s]; for (int i = 0; i < s; i++) larges[i] = (n / (2 * i + 1) - 1) / 2;
    bool skip[v + 1];
   
    #define DIVIDE(n, d) ((int)((double)(n)/d))
    #define HALF(n) (((n)-(1))>>(1))
   
    int pc = 0;
    
    for (int p = 3; p <= v; p += 2) if (!skip[p]) {
        int q = p * p;
        if ((i64)q * q > n) break;
        skip[p] = true;
        for (int i = q; i <= v; i += 2 * p) skip[i] = true;
        int ns = 0;
        for (int k = 0; k < s; k++) {
            int i = roughs[k];
            if (skip[i]) continue;
            i64 d = (i64)i * p;
            larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[HALF(DIVIDE(n, d))]) + pc;
            roughs[ns++] = i;
        }
        s = ns;
        for (int i = HALF(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
            int c = smalls[j >> 1] - pc;
            for (int e = (j * p) >> 1; i >= e; i--) smalls[i] -= c;
        }
        pc++;
    }

    larges[0] += (i64)(s + 2 * (pc - 1)) * (s - 1) / 2;
    for (int k = 1; k < s; k++) larges[0] -= larges[k];
    for (int l = 1; l < s; l++) {
        i64 q = roughs[l];
        i64 M = n / q;
        int e = smalls[HALF(M / q)] - pc;
        if (e < l + 1) break;
        i64 t = 0;
        for (int k = l + 1; k <= e; k++) t += smalls[HALF(DIVIDE(M, roughs[k]))];
        larges[0] += t - (i64)(e - l) * (pc + l - 1);
    }
    
    #undef DIVIDE
    #undef HALF
    
    return larges[0] + 1;
}

u64 in_u64(void) {
    u64 c, x = 0;
    while (c = getchar_unlocked(), c < 48 || c > 57);
    while (47 < c && c < 58) {
        x = x * 10 + c - 48;
        c = getchar_unlocked();
    }
    return x;
}

void out_u64(u64 x) {
    if (x >= 10) out_u64(x / 10);
    putchar_unlocked(x - x / 10 * 10 + 48);
}

void NL(void) { putchar_unlocked('\n'); }

int main() {
    u64 T = in_u64();
    while (T--) {
        out_u64(prime_counting(in_u64()));
        NL();
    }
}
0