結果
問題 | No.2011 Arbitrary Mod (Hidden) |
ユーザー | chineristAC |
提出日時 | 2022-07-15 21:57:56 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,572 bytes |
コンパイル時間 | 326 ms |
コンパイル使用メモリ | 81,792 KB |
実行使用メモリ | 56,192 KB |
最終ジャッジ日時 | 2024-06-27 17:47:23 |
合計ジャッジ時間 | 6,411 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 49 ms
55,936 KB |
testcase_02 | WA | - |
testcase_03 | AC | 50 ms
56,064 KB |
testcase_04 | WA | - |
testcase_05 | AC | 50 ms
55,936 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 49 ms
55,808 KB |
testcase_10 | AC | 49 ms
56,064 KB |
testcase_11 | WA | - |
testcase_12 | AC | 50 ms
56,192 KB |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 50 ms
56,064 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | AC | 49 ms
55,936 KB |
testcase_19 | AC | 49 ms
55,936 KB |
testcase_20 | AC | 52 ms
56,064 KB |
testcase_21 | WA | - |
testcase_22 | AC | 51 ms
56,064 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | AC | 48 ms
56,064 KB |
testcase_28 | AC | 49 ms
55,808 KB |
testcase_29 | AC | 49 ms
56,064 KB |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | AC | 49 ms
55,936 KB |
testcase_34 | AC | 48 ms
56,064 KB |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | AC | 49 ms
55,808 KB |
testcase_39 | AC | 49 ms
56,064 KB |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
ソースコード
import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import log,gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def isPrimeMR(n): if n==1: return 0 d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17,19,23,29,31,37,41,43,47] if n in L: return 1 for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): from math import gcd m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret """ 2^n mod phi(M) = 0 かつ a^2-398 \neq 0 mod M → M=2^n+1 prime """ M = 2*3*5*(2**8+1)*(2**16+1) def euler_phi(n): res = n for x in range(2,n+1): if x ** 2 > n: break if n%x==0: res = res//x * (x-1) while n%x==0: n //= x if n!=1: res = res//n * (n-1) return res n = int(input()) print(M) print(1)