結果

問題 No.2009 Drunkers' Contest
ユーザー souta-1326souta-1326
提出日時 2022-07-15 22:46:26
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 13,464 bytes
コンパイル時間 4,889 ms
コンパイル使用メモリ 279,016 KB
実行使用メモリ 35,472 KB
最終ジャッジ日時 2024-06-27 19:44:16
合計ジャッジ時間 10,998 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 TLE -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
testcase_54 -- -
testcase_55 -- -
testcase_56 -- -
testcase_57 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define PI acos(-1)
#define all(v) (v).begin(),(v).end()
#define fi first
#define se second
#define mpa make_pair
#define mpt make_tuple
#define emb emplace_back
#define endll "\n"
using namespace std;
using namespace atcoder;
using ll = long long;
// std::ostream& operator<<(std::ostream& os,const modint n){
//   return os << n.val();
// }
// std::ostream& operator<<(std::ostream& os,const modint998244353 n){
//   return os << n.val();
// }
// std::ostream& operator<<(std::ostream& os,const modint1000000007 n){
//   return os << n.val();
// }
template<class T> constexpr inline void input(vector<T> &v){
  for(int i=0;i<v.size();i++) cin >> v[i];
}
template<class T,class S> constexpr inline void input(vector<T> &v,vector<S> &u){
  for(int i=0;i<v.size();i++) cin >> v[i] >> u[i];
}
template<class T,class S,class R> constexpr inline void input(vector<T> &v,vector<S> &u,vector<R> &t){
  for(int i=0;i<v.size();i++) cin >> v[i] >> u[i] >> t[i];
}
template<class T> constexpr inline void input(vector<vector<T>> &v){
  for(int i=0;i<v.size();i++){
    for(int j=0;j<v[i].size();j++) cin >> v[i][j];
  }
}
template<class T> constexpr inline void input_graph(vector<vector<T>> &G,int inputcount = -1,const bool isdirect = false,const bool indexed = 1){
  if(inputcount == -1) inputcount = G.size()-1;
  T a,b;
  for(int i=0;i<inputcount;i++){
    cin >> a >> b;a -= indexed;b -= indexed;
    G[a].emb(b);
    if(!isdirect) G[b].emb(a);
  }
}
template<class T> constexpr inline void output(vector<T> &v,bool space = true){
  if(v.size() == 0){
    cout << endll;return;
  }
  if(space){
    for(int i=0;i<v.size()-1;i++) cout << v[i] << " ";
    cout << v.back() << endll;
  }
  else{
    for(int i=0;i<v.size();i++) cout << v[i] << endll;
  }
}
template<class T,class S> constexpr inline void output(vector<T> &v,vector<S> &u){
  for(int i=0;i<v.size();i++) cout << v[i] << " " << u[i] << endll;
}
template<class T,class S,class R> constexpr inline void output(vector<T> &v,vector<S> &u,vector<R> &t){
  for(int i=0;i<v.size();i++) cout << v[i] << " " << u[i] << " " << t[i] << endll;
}
template<class T> constexpr inline void output(vector<vector<T>> &v){
  for(int i=0;i<v.size();i++){
    if(v.size() == 0){
      cout << endll;continue;
    }
    for(int j=0;j<v[i].size()-1;j++) cout << v[i][j] << " ";
    cout << v[i].back() << endll;
  }
}
template<class T> constexpr inline bool on(T n,T i){
  return n&(1LL<<i);
}
template<class T,class S> constexpr inline T ceil(T x,S y){
  return (x+y-1)/y;
}
template<class T> constexpr bool isprime(T x){
  if(x <= 1) return false;
  for(T i=2;i*i<=x;i++){
    if(x%i == 0) return false; 
  }
  return true;
}
vector<bool> isprime_format(int n){
  vector<bool> P(n+1,1);P[0] = P[1] = 1;
  for(int i=2;i*i<=n;i++){
    if(!P[i]) continue;
    for(int j=i+i;j<=n;j+=i) P[j] = false;
  }
  return P;
}
vector<int> prime_format(int n){
  vector<bool> P = isprime_format(n);
  vector<int> ans;
  for(int i=2;i<=n;i++){
    if(P[i]) ans.emb(i);
  }
  return ans;
}
template<class T> vector<T> topo_sort(T N,const vector<vector<T>> &G){
  T i,j,f;
  vector<int> cnt(N);
  for(i=0;i<N;i++){
    for(j=0;j<G[i].size();j++) cnt[G[i][j]]++;
  }
  vector<T> q;
  for(i=0;i<N;i++){
    if(cnt[i] == 0) q.emb(i);
  }
  for(f=0;f<q.size();f++){
    for(i=0;i<G[q[f]].size();i++){
      cnt[G[q[f]][i]]--;
      if(cnt[G[q[f]][i]] == 0){
        q.emb(G[q[f]][i]);
      }
    }
  }
  return q;
}
template<class T> vector<T> dijkstra(T N,vector<T> &st,vector<vector<pair<T,T>>> &G,const T inf = -1){
  T fn,fp,i;
  priority_queue<pair<T,T>,vector<pair<T,T>>,greater<>> q;
  vector<T> D(N,inf);
  for(i=0;i<st.size();i++){
    D[st[i]] = 0;
    q.push(mpa(0,st[i]));
  }
  while(!q.empty()){
    fn = q.top().fi;fp = q.top().se;q.pop();
    if(D[fp] < fn) continue;
    for(i=0;i<G[fp].size();i++){
      if(D[G[fp][i].fi] == -1 || D[G[fp][i].fi] > D[fp]+G[fp][i].se){
        D[G[fp][i].fi] = D[fp]+G[fp][i].se;
        q.push(mpa(D[G[fp][i].fi],G[fp][i].fi));
      }
    }
  }
  return D;
}
template<class T> vector<T> dijkstra(T N,T st,vector<vector<pair<T,T>>> &G,const T inf = -1){
  vector<T> st_vec({st});
  return dijkstra(N,st_vec,G,inf);
}
template<class T> class WarshallFloyd{
  T N,inf;
  vector<vector<T>> D;
  vector<vector<T>> prev;
  bool isdirect;
  void setting(){
    for(T k=0;k<N;k++){
      for(T i=0;i<N;i++){
        for(T j=0;j<N;j++){
          if(D[i][k] == inf || D[k][j] == inf) continue;
          if(D[i][j] > D[i][k]+D[k][j]){
            D[i][j] > D[i][k]+D[k][j];
            prev[i][j] = prev[k][j];
          } 
        }
      }
    }
  }
public:
  WarshallFloyd(T N,vector<T> &u,vector<T> &v,vector<T> &c,T inf,bool isdirect){
    this->N = N;
    this->inf = inf;
    this->isdirect = isdirect;
    assert(u.size() == v.size());
    vector<vector<T>>(N,vector<T>(N,inf)).swap(D);
    vector<vector<T>>(N,vector<T>(N)).swap(prev);
    for(T i=0;i<N;i++){
      for(T j=0;j<N;j++) prev[i][j] = i;
    }
    for(T i=0;i<N;i++) D[i][i] = 0;
    for(T i=0;i<u.size();i++){
      D[u[i]][v[i]] = min(D[u[i]][v[i]],c[i]);
      if(!isdirect) D[v[i]][u[i]] = min(D[v[i]][u[i]],c[i]);
    }
    setting();
  }
  WarshallFloyd(vector<vector<T>> D,T inf,bool isdirect){
    this->N = D.size();
    this->inf = inf;
    this->D = D;
    this->isdirect = isdirect;
    vector<vector<T>>(N,vector<T>(N)).swap(prev);
    for(T i=0;i<N;i++){
      for(T j=0;j<N;j++) prev[i][j] = i;
    }
    setting();
  }
  void append(T s,T t,T c){
    for(T i=0;i<N;i++){
      for(T j=0;j<N;j++){
        if(D[i][s] != inf && D[t][c] != inf){
          if(D[i][j] > D[i][s]+c+D[t][j]){
            D[i][j] = D[i][s]+c+D[t][j];
            prev[i][j] = prev[t][j];
          }
        }
        if(!isdirect && D[i][t] != inf && D[s][j] != inf){
          if(D[i][j] > D[i][t]+c+D[s][j]){
            D[i][j] = D[i][t]+c+D[s][j];
            prev[i][j] = prev[s][j];
          }
        }
      }
    }
  }
  T at(T i,T j){
    return D[i][j];
  }
  vector<T> Path(T s,T t){
    vector<T> ret;
    ret.emb(t);
    while(t != s) ret.emb(t=prev[s][t]);
    reverse(all(ret));
    return ret;
  }
  bool negative_cycle(){
    for(T i=0;i<N;i++){
      if(D[i][i] < 0) return true;
    }
    return false;
  }
  vector<vector<T>> Graph(){
    return D;
  }
};
template<class T> class mat{
  vector<vector<T>> V;
public:
  constexpr mat(){}
  constexpr mat(int N,int M){
    vector<vector<T>>(N,vector<T>(M)).swap(this->V);
  }
  constexpr mat(vector<vector<T>> &v){
    this->V = v;
  }
  constexpr int height(){return V.size();}
  constexpr int width(){return V[0].size();}
  constexpr T &val(int a,int b){return V[a][b];}
  constexpr vector<T> &val(int a){return V[a];}
  constexpr vector<vector<T>> &val(){return V;}
  //ret(mat[i][j],elem(a[i][k],b[k][j]))
  constexpr mat calc(mat &b,function<T(T,T)> ret = [](T x,T y){return x+y;},function<T(T,T)> elem = [](T x,T y){return x*y;})const{
    vector<vector<T>> c(V.size(),vector<T>(b.width()));
    for(int i=0;i<V.size();i++){
      for(int k=0;k<b.height();k++){
        for(int j=0;j<b.width();j++) c[i][j] = ret(c[i][j],elem(V[i][k],b.val(k,j)));
      }
    }
    return mat(c);
  }
  constexpr mat pow(ll y,function<T(T,T)> ret = [](T x,T y){return x+y;},function<T(T,T)> elem = [](T x,T y){return x*y;}) const {
    mat x = *this,z;
    while(y){
      if(y&1){
        if(z.height() == 0) z = x;
        else z = z.calc(x,ret,elem);
      }
      x = x.calc(x,ret,elem);
      y >>= 1;
    }
    return z;
  }
};
template<class T> class frac{
  T bunsi,bunbo;
  constexpr void setting() noexcept {
    T g = gcd(bunsi,bunbo);
    bunsi /= g;bunbo /= g;
    if(bunbo < 0){
      bunsi = -bunsi;bunbo = -bunbo;
    }
  }
public:
  constexpr frac(T Bunsi = 0,T Bunbo = 1) noexcept {
    bunsi = Bunsi;bunbo = Bunbo;
    setting();
  }
  constexpr T &Bunsi() noexcept {return bunsi;}
  constexpr const T &Bunsi() const noexcept {return bunsi;}
  constexpr T &Bunbo() noexcept {return bunbo;}
  constexpr const T &Bunbo() const noexcept {return bunbo;}
  constexpr frac<T> &operator+=(const frac<T> &rhs) noexcept {
    bunsi = bunsi*rhs.bunbo+bunbo*rhs.bunsi;
    bunbo *= rhs.bunbo;
    setting();
    return *this;
  }
  constexpr frac<T> &operator-=(const frac<T> &rhs) noexcept {
    bunsi = bunsi*rhs.bunbo-bunbo*rhs.bunsi;
    bunbo *= rhs.bunbo;
    setting();
    return *this;
  }
  constexpr frac<T> &operator*=(const frac<T> &rhs) noexcept {
    bunbo *= rhs.bunbo;
    bunsi *= rhs.bunsi;
    setting();
    return *this;
  }
  constexpr frac<T> &operator/=(const frac<T> &rhs) noexcept {
    bunbo *= rhs.bunsi;
    bunsi *= rhs.bunbo;
    setting();
    return *this;
  }
  constexpr frac<T> operator+(const frac<T> &rhs) const noexcept {return frac(*this) += rhs;}
  constexpr frac<T> operator-(const frac<T> &rhs) const noexcept {return frac(*this) -= rhs;}
  constexpr frac<T> operator*(const frac<T> &rhs) const noexcept {return frac(*this) *= rhs;}
  constexpr frac<T> operator/(const frac<T> &rhs) const noexcept {return frac(*this) /= rhs;}
  constexpr bool operator<(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo < bunbo*rhs.bunsi;}
  constexpr bool operator>(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo > bunbo*rhs.bunsi;}
  constexpr bool operator>=(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo >= bunbo*rhs.bunsi;}
  constexpr bool operator<=(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo <= bunbo*rhs.bunsi;}
  constexpr bool operator==(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo == bunbo*rhs.bunsi;}
  constexpr bool operator!=(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo != bunbo*rhs.bunsi;}
};
template<class T> class line{
  //y = ax+b;
  frac<T> a,b;
  bool a_inf;
  T inf_x;
public:
  constexpr line(T x1 = 0,T y1 = 0,T x2 = 1,T y2 = 1) noexcept {
    if(x1 != x2){
      a_inf = false;
      a = frac(y2-y1,x2-x1);
      b = frac(y1)-frac(x1)*a;
    }
    else{
      a_inf = true;
      inf_x = x1;
    }
  }
  constexpr frac<T> &slope() noexcept {return a;}
  constexpr const frac<T> &slope() const noexcept {return a;}
  constexpr frac<T> &inter() noexcept {return b;}
  constexpr const frac<T> &inter() const noexcept {return b;}
  constexpr bool match(const line &rhs) const noexcept {
    if(!a_inf && !rhs.a_inf) return a==rhs.a && b==rhs.b;
    else if(a_inf^rhs.a_inf) return false;
    else return inf_x==rhs.inf_x;
  }
  constexpr bool parallel(const line &rhs) const noexcept {
    if(!a_inf && !rhs.a_inf) return a==rhs.a;
    else return !(a_inf^rhs.a_inf);
  }
  constexpr pair<frac<T>,frac<T>> point(const line &rhs) const noexcept {
    //ax+b = y
    //cx+d = y
    //(a-c)x= d-b
    if(a_inf){
      frac<T> x(inf_x);
      frac<T> y = rhs.a*x+rhs.b;
      return make_pair(x,y);
    }
    else if(rhs.a_inf){
      frac<T> x(rhs.inf_x);
      frac<T> y = a*x+b;
      return make_pair(x,y);
    }
    else{
      frac<T> x = (rhs.b-b)/(a-rhs.a);
      frac<T> y = a*x+b;
      return make_pair(x,y);
    }
  }
};
template <typename T>
struct BIT {
    int n;          // 配列の要素数(数列の要素数+1)
    vector<T> bit;  // データの格納先
    BIT(int n_) : n(n_ + 1), bit(n, 0) {}
    void add(int i, T x) {
        for (int idx = i; idx < n; idx += (idx & -idx)) {
            bit[idx] += x;
        }
    }
    T sum(int i) {
        T s(0);
        for (int idx = i; idx > 0; idx -= (idx & -idx)) {
            s += bit[idx];
        }
        return s;
    }
};
int main(){
  cin.tie(0);ios::sync_with_stdio(false);
  //-----------------------------------------------
  int N;cin >> N;
  vector<double> A(N),B(N);input(A);input(B);
  vector<double> limit(N);
  vector<pair<double,int>> eve(N);
  for(int i=0;i<N;i++){
    double lef = 0,rig = 1e9;
    for(int l=0;l<100;l++){
      double midl = (lef*2+rig)/3,midr = (lef+rig*2)/3;
      if(A[i]/(1+midl)+B[i]*(1+midl) > A[i]/(1+midr)+B[i]*(1+midr)) lef = midl;
      else rig = midr;
    }
    limit[i] = lef;
    eve[i] = mpa(lef,i);
  }
  sort(all(eve));
  vector<double> lef(N),rig(N,1e9);
  vector<pair<double,int>> mid(N*2);
  vector<double> midl(N),midr(N);
  for(int l=0;l<80;l++){
    for(int i=0;i<N;i++) mid[i] = mpa((lef[i]*2+rig[i])/3,i);
    for(int i=0;i<N;i++) mid[N+i] = mpa((lef[i]+rig[i]*2)/3,N+i);
    sort(all(mid));
    int eve_itr = 0;
    BIT<double> def(N),bit_a(N),bit_b(N);
    for(auto [val,k_itr]:mid){
      int itr = k_itr%N;
      while(eve_itr < N && eve[eve_itr].fi < val){
        def.add(eve[eve_itr].se+1,A[eve[eve_itr].se]/(1+limit[eve[eve_itr].se])+B[eve[eve_itr].se]*(1+limit[eve[eve_itr].se]));
        bit_a.add(eve[eve_itr].se+1,A[eve[eve_itr].se]);
        bit_b.add(eve[eve_itr].se+1,B[eve[eve_itr].se]);
        eve_itr++;
      }
      (k_itr<N ? midl:midr)[itr] = A[itr]/(1+val)+B[itr]*(1+val)+(bit_a.sum(N)-bit_a.sum(itr+1))/(1+val)+(bit_b.sum(N)-bit_b.sum(itr+1))*(1+val)-(def.sum(N)-def.sum(itr+1));
    }
    for(int i=0;i<N;i++){
      if(midl[i] < midr[i]) rig[i] = (lef[i]+rig[i]*2)/3;
      else lef[i] = (lef[i]*2+rig[i])/3;
    }
  }
  double ans = 0,alc = 0;
  for(int i=0;i<N;i++){
    alc = max(alc,min(limit[i],lef[i]));
    ans += A[i]/(1+alc)+B[i]*(1+alc);
    cout << limit[i] << " " << lef[i] << " " << alc << endll;
  }
  cout << ans << endll;
}
0