結果
問題 | No.2013 Can we meet? |
ユーザー | 👑 rin204 |
提出日時 | 2022-07-15 23:21:58 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,099 bytes |
コンパイル時間 | 225 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 113,568 KB |
最終ジャッジ日時 | 2024-06-27 20:50:32 |
合計ジャッジ時間 | 9,263 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 51 ms
63,360 KB |
testcase_01 | AC | 53 ms
63,616 KB |
testcase_02 | AC | 53 ms
63,616 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 53 ms
63,360 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 53 ms
63,232 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 52 ms
63,104 KB |
testcase_13 | WA | - |
testcase_14 | AC | 54 ms
64,640 KB |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | AC | 53 ms
64,768 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | AC | 73 ms
88,448 KB |
testcase_33 | AC | 660 ms
111,304 KB |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | AC | 446 ms
112,468 KB |
testcase_38 | AC | 73 ms
88,576 KB |
ソースコード
# 自分用メモ MOD = 998244353 N = 200200 fact = [0 for _ in range(N)] invfact = [0 for _ in range(N)] fact[0] = 1 for i in range(1, N): fact[i] = fact[i - 1] * i % MOD invfact[N - 1] = pow(fact[N - 1], MOD - 2, MOD) for i in range(N - 2, -1, -1): invfact[i] = invfact[i + 1] * (i + 1) % MOD def nCk(n, k): if k < 0 or n < k: return 0 else: return (fact[n] * invfact[k] % MOD) * invfact[n - k] % MOD def nPk(n, k): if k < 0 or n < k: return 0 else: return fact[n] * invfact[n - k] % MOD def nHk(n, k): if n == k == 0: return 1 return nCk(n + k - 1, k) class FFT: def __init__(self, MOD=998244353): FFT.MOD = MOD g = self.primitive_root_constexpr() ig = pow(g, FFT.MOD - 2, FFT.MOD) FFT.W = [pow(g, (FFT.MOD - 1) >> i, FFT.MOD) for i in range(30)] FFT.iW = [pow(ig, (FFT.MOD - 1) >> i, FFT.MOD) for i in range(30)] def primitive_root_constexpr(self): if FFT.MOD == 998244353: return 3 elif FFT.MOD == 200003: return 2 elif FFT.MOD == 167772161: return 3 elif FFT.MOD == 469762049: return 3 elif FFT.MOD == 754974721: return 11 divs = [0] * 20 divs[0] = 2 cnt = 1 x = (FFT.MOD - 1) // 2 while x % 2 == 0: x //= 2 i = 3 while i * i <= x: if x % i == 0: divs[cnt] = i cnt += 1 while x % i == 0: x //= i i += 2 if x > 1: divs[cnt] = x cnt += 1 g = 2 while 1: ok = True for i in range(cnt): if pow(g, (FFT.MOD - 1) // divs[i], FFT.MOD) == 1: ok = False break if ok: return g g += 1 def fft(self, k, f): for l in range(k, 0, -1): d = 1 << l - 1 U = [1] for i in range(d): U.append(U[-1] * FFT.W[l] % FFT.MOD) for i in range(1 << k - l): for j in range(d): s = i * 2 * d + j f[s], f[s + d] = (f[s] + f[s + d]) % FFT.MOD, U[j] * (f[s] - f[s + d]) % FFT.MOD def ifft(self, k, f): for l in range(1, k + 1): d = 1 << l - 1 for i in range(1 << k - l): u = 1 for j in range(i * 2 * d, (i * 2 + 1) * d): f[j+d] *= u f[j], f[j + d] = (f[j] + f[j + d]) % FFT.MOD, (f[j] - f[j + d]) % FFT.MOD u = u * FFT.iW[l] % FFT.MOD def convolve(self, A, B): n0 = len(A) + len(B) - 1 k = (n0).bit_length() n = 1 << k A += [0] * (n - len(A)) B += [0] * (n - len(B)) self.fft(k, A) self.fft(k, B) A = [a * b % FFT.MOD for a, b in zip(A, B)] self.ifft(k, A) inv = pow(n, FFT.MOD - 2, FFT.MOD) A = [a * inv % FFT.MOD for a in A] del A[n0:] return A n = int(input()) x1, y1, x2, y2 = map(int, input().split()) a, b = map(int, input().split()) A = list(map(int, input().split())) dx = x2 - x1 dy = y2 - y1 if (dx + dy) & 1: print(0) exit() lst = [] x = a * pow(2 * (a + b), MOD - 2, MOD) % MOD y = a * pow(2 * (a + b), MOD - 2, MOD) % MOD same = [0] for t in range(2, 2 * n + 1, 2): ii = (dx + dy + t) // 2 jj = ii - dx tmp = nCk(t, ii) * nCk(t, jj) % MOD xx = pow(x, ii, MOD) yy = pow(y, jj, MOD) times = xx * yy % MOD lst.append(tmp * times % MOD) # ここカタラン数っぽくしなきゃいけない ii = t // 2 jj = ii tmp = nCk(t, ii) * nCk(t, jj) % MOD xx = pow(x, ii, MOD) yy = pow(y, jj, MOD) times = xx * yy % MOD tmp *= times same.append(tmp % MOD) fft = FFT() C = fft.convolve(lst, same) ans = 0 for i in range(n): tmp = A[i] * (lst[i] - C[i]) % MOD ans += tmp ans %= MOD print(ans)