結果
問題 | No.2013 Can we meet? |
ユーザー | chineristAC |
提出日時 | 2022-07-15 23:24:52 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,704 ms / 2,500 ms |
コード長 | 10,727 bytes |
コンパイル時間 | 234 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 281,744 KB |
最終ジャッジ日時 | 2024-06-27 20:54:37 |
合計ジャッジ時間 | 28,889 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 86 ms
75,648 KB |
testcase_01 | AC | 86 ms
75,776 KB |
testcase_02 | AC | 88 ms
75,648 KB |
testcase_03 | AC | 88 ms
76,416 KB |
testcase_04 | AC | 86 ms
75,648 KB |
testcase_05 | AC | 88 ms
76,032 KB |
testcase_06 | AC | 88 ms
76,032 KB |
testcase_07 | AC | 89 ms
76,416 KB |
testcase_08 | AC | 88 ms
76,288 KB |
testcase_09 | AC | 89 ms
76,288 KB |
testcase_10 | AC | 88 ms
76,160 KB |
testcase_11 | AC | 95 ms
78,464 KB |
testcase_12 | AC | 94 ms
78,592 KB |
testcase_13 | AC | 94 ms
78,592 KB |
testcase_14 | AC | 176 ms
89,232 KB |
testcase_15 | AC | 177 ms
88,724 KB |
testcase_16 | AC | 181 ms
89,540 KB |
testcase_17 | AC | 177 ms
89,412 KB |
testcase_18 | AC | 177 ms
89,276 KB |
testcase_19 | AC | 175 ms
89,436 KB |
testcase_20 | AC | 183 ms
89,148 KB |
testcase_21 | AC | 183 ms
89,492 KB |
testcase_22 | AC | 181 ms
89,752 KB |
testcase_23 | AC | 182 ms
89,304 KB |
testcase_24 | AC | 1,596 ms
279,704 KB |
testcase_25 | AC | 1,590 ms
281,744 KB |
testcase_26 | AC | 1,588 ms
277,800 KB |
testcase_27 | AC | 1,589 ms
276,896 KB |
testcase_28 | AC | 1,591 ms
279,704 KB |
testcase_29 | AC | 1,608 ms
279,580 KB |
testcase_30 | AC | 1,579 ms
277,152 KB |
testcase_31 | AC | 1,600 ms
281,624 KB |
testcase_32 | AC | 1,596 ms
277,920 KB |
testcase_33 | AC | 1,630 ms
278,880 KB |
testcase_34 | AC | 1,704 ms
281,100 KB |
testcase_35 | AC | 1,679 ms
281,260 KB |
testcase_36 | AC | 1,581 ms
277,168 KB |
testcase_37 | AC | 1,602 ms
279,648 KB |
testcase_38 | AC | 1,625 ms
278,368 KB |
ソースコード
mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 def _ntt(f,L,reverse=False): F=[f[i] for i in range(L)] n = L.bit_length() - 1 base = omega if reverse: base = rev_omega if not n: return F size = 2**n wj = pow(base,2**22,mod) res = [0]*2**n for i in range(n,0,-1): use_omega = pow(base,2**(22+i-n),mod) res = [0]*2**n size //= 2 w = 1 for j in range(0,L//2,size): for a in range(size): res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod t = (w * wj) % mod res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod w = (w * use_omega) % mod F = res return res def ntt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L) return F def intt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L,reverse=True) inv = pow(L,mod-2,mod) for i in range(L): F[i] *= inv F[i] %= mod return F def convolve(_f,_g,limit): f = [v for v in _f] g = [v for v in _g] l = len(f)+len(g)-1 L = 1<<((l-1).bit_length()) F = ntt(f,L) G = ntt(g,L) H = [(F[i] * G[i]) % mod for i in range(L)] h = intt(H,L) return h[:limit] mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 _fft_mod = 998244353 _fft_imag = 911660635 _fft_iimag = 86583718 _fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899) _fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235) _fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204) _fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681) def _butterfly(a): n = len(a) h = (n - 1).bit_length() len_ = 0 while len_ < h: if h - len_ == 1: p = 1 << (h - len_ - 1) rot = 1 for s in range(1 << len_): offset = s << (h - len_) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot % _fft_mod a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate2[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 1 else: p = 1 << (h - len_ - 2) rot = 1 for s in range(1 << len_): rot2 = rot * rot % _fft_mod rot3 = rot2 * rot % _fft_mod offset = s << (h - len_) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % _fft_mod * _fft_imag a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate3[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 2 def _butterfly_inv(a): n = len(a) h = (n - 1).bit_length() len_ = h while len_: if len_ == 1: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 1)): offset = s << (h - len_ + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) * irot % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate2[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 1 else: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 2)): irot2 = irot * irot % _fft_mod irot3 = irot2 * irot % _fft_mod offset = s << (h - len_ + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % _fft_mod a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % _fft_mod a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate3[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 2 def _convolution_naive(a, b): n = len(a) m = len(b) ans = [0] * (n + m - 1) if n < m: for j in range(m): for i in range(n): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod else: for i in range(n): for j in range(m): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod return ans def _convolution_fft(a, b): a = a.copy() b = b.copy() n = len(a) m = len(b) z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) _butterfly(a) b += [0] * (z - m) _butterfly(b) for i in range(z): a[i] = a[i] * b[i] % _fft_mod _butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(n + m - 1): a[i] = a[i] * iz % _fft_mod return a def _convolution_square(a): a = a.copy() n = len(a) z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) _butterfly(a) for i in range(z): a[i] = a[i] * a[i] % _fft_mod _butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(2 * n - 1): a[i] = a[i] * iz % _fft_mod return a def convolution(a, b): """It calculates (+, x) convolution in mod 998244353. Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], it calculates the array c of length n + m - 1, defined by > c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353. It returns an empty list if at least one of a and b are empty. Constraints ----------- > len(a) + len(b) <= 8388609 Complexity ---------- > O(n log n), where n = len(a) + len(b). """ n = len(a) m = len(b) if n == 0 or m == 0: return [] if min(n, m) <= 0: return _convolution_naive(a, b) if a is b: return _convolution_square(a) return _convolution_fft(a, b) def taylor_shift(f,a): g = [f[i]*g1[i]%mod for i in range(len(f))][::-1] e = [g2[i] for i in range(len(f))] t = 1 for i in range(1,len(f)): t = t * a % mod e[i] = e[i] * t % mod res = convolution(g,e)[:len(f)] return [res[len(f)-1-i]*g2[i]%mod for i in range(len(f))] def inverse(f,limit): assert(f[0]!=0) l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = f[:L] f+=[0]*(L-len(f)) res = [pow(f[0],mod-2,mod)] for i in range(1,n+1): h = convolve(res,f[:2**i],2**i) h = [(-h[i]) % mod for i in range(2**i)] h[0] = (h[0]+2) % mod res = convolve(res,h,2**i) return res[:limit] import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import log,gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def cmb(n,r): if r < 0 or n < r: return 0 return g1[n] * (g2[n-r] * g2[r] % mod) % mod N = int(input()) a,b,c,d = mi() A,B = mi() P = li() p,q = abs(c-a),abs(d-b) x,y = A*pow(2*A+2*B,mod-2,mod) % mod,B*pow(2*A+2*B,mod-2,mod) % mod X = [0] * (2*N+1) Y = [0] * (2*N+1) for i in range(2*N+1): if 2*i+p <= 2*N: X[2*i+p] = (g2[i] * g2[i+p] % mod) * pow(x,2*i+p,mod) % mod if 2*i+q <= 2*N: Y[2*i+q] = (g2[i] * g2[i+q] % mod) * pow(y,2*i+q,mod) % mod XY = convolve(X,Y,2*N+1) f = [0] * (N+1) for i in range(N+1): f[i] = XY[2*i] * g1[2*i] % mod p,q = 0,0 X = [0] * (2*N+1) Y = [0] * (2*N+1) for i in range(2*N+1): if 2*i+p <= 2*N: X[2*i+p] = (g2[i] * g2[i+p] % mod) * pow(x,2*i+p,mod) % mod if 2*i+q <= 2*N: Y[2*i+q] = (g2[i] * g2[i+q] % mod) * pow(y,2*i+q,mod) % mod XY = convolve(X,Y,2*N+1) g = [0] * (N+1) for i in range(N+1): g[i] = XY[2*i] * g1[2*i] % mod ig = inverse(g,N+1) h = convolve(f,ig,N+1) res = 0 for i in range(N): res += h[i+1] * P[i] res %= mod print(res)